39 resultados para FACTOR PROTEIN-LEVELS

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background-C- reactive protein (CRP) levels have been shown to predict a number of cardiovascular outcomes. CRP levels have also been found to be elevated in patients with abdominal aortic aneurysms (AAAs). The aim of this study was to assess the relation between CRP levels and rates of expansion of small AAAs. Methods and Results-A cohort of men with small aneurysms was identified in a trial of screening with ultrasound scanning. After initial screening, men were rescanned at 6- to 12-month intervals. CRP levels were measured at the first follow-up visit. Rates of expansion and risk factors for expansion were assessed with the use of data from 545 men who attended for at least 1 scan after CRP levels were measured. These men were followed for a median of 48 (range, 5 to 69) months. The mean annual rate of expansion was 1.6 mm. The median CRP level was 2.6 mg/L in men with the smaller AAAs (30 to 39 mm, n=433) compared with 3.5 mg/L in men with larger AAAs (40 to 54 mm, n=112) (P=0.007). The multivariate age-adjusted logistic model confirmed initial aortic diameter to be the only factor associated with rapid expansion with an odds ratio of 7.2 (95% CI, 4.3,12.2) for an initial diameter of 40 to 54 mm relative to one of 30 to 39 mm. Conclusions-Most small aneurysms expand slowly. CRP levels are elevated in larger aneurysms but do not appear to be associated with rapid expansion. The most useful predictor of aneurysmal expansion in men is aortic diameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ataxia-telangiectasia (A-T) is characterised by hypersensitivity to ionising radiation (IR), immunodeficiency, neurodegeneration and predisposition to malignancy. Mutations in the A-T gene (ATM) often result in reduced levels of ATM protein and/or compromise ATM function. IR induced DNA damage is known to rapidly upregulate ATM kinase activity/phosphorylation events in the control of cell cycle progression and other processes. Variable expression of ATM levels in different tissues and its upregulation during cellular proliferation indicate that the level of ATM is also regulated by mechanisms other than gene mutation. Here, we report on the IR induction of ATM protein levels within a number of different cell types and tissues. Induction had begun within 5 min and peaked within 2 h of exposure to 2 Gy of IR, suggesting a rapid post-translational mechanism. Low basal levels of ATM protein were more responsive to IR induction compared to high ATM levels in the same cell type. Irradiation of fresh skin biopsies led to an average three-fold increase in ATM levels while immunohistochemical analyses indicated low expressing cells within the basal layer with ten-fold increases in ATM levels following IR. ATM high expressing lymphoblastoid cell lines (LCLs) which were initially resistant to the radiation-induction of ATM levels also became responsive to IR after ATM antisense expression was used to reduce the basal levels of the protein. These results demonstrate that ATM is present in variable amounts in different tissue/cell types and where basal levels are low ATM levels can be rapidly induced by IR to saturable levels specific for different cell types. ATM radiation-induction is a sensitive and rapid radioprotective response that complements the IR mediated activation of ATM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modulation of the cytochrome P450 (CYP) monooxygenase system by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 mumol/kg body weight, i.p.) of cadmium chloride (CdCl2). Total CYP content of liver and kidney microsomes decreased maximally (56% and 85%, respectively) 24 and 18 h, respectively, after CdCl2 treatment. Progressive increases of hepatic coumarin 7-hydroxylase (COH) activity; indicative of CYP2A5 activity, relative to the total CYP content were seen at 8 h (2-fold), 12 h (3-fold), 18 h (12-fold), and 24 h (15-fold). Similar changes were seen in the kidney. Liver and kidney CYP2A5 mRNA levels increased maximally 12 and 4 h after treatment and decreased to almost half 6 h later. In contrast, kidney and liver CYP2A5 protein levels increased maximally at 18 and 24 h. The CYP2A5 mRNA levels in the kidney and liver increased after Cd treatment in Nrf2 +/+ but not in Nrf2 -/- mouse. This study demonstrates that hepatic and kidney CYP2A5 is upregulated by cadmium with a somewhat faster response in the kidney than the liver. The strong upregulation of the CYP2A5 both at mRNA and enzyme activity levels, with a simultaneous decrease in the total CYP concentration suggest an unusual mode of regulation of CYP2A5 in response to cadmium exposure, amongst the CYP enzymes. The observed decrease in the mRNA but not in protein levels after maximal induction may suggest involvement of post-trancriptional mechanisms in the regulation. Upregulation of CYP2A5 by cadmium in the Nrf2 +/+ mice but not in the Nrf2 -/- mice indicates a role for this transcription factor in the regulation. (C) 2003 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of conjugating cholesterol to either or both ends of a phosphorothioate (PS) oligonucleotide were analyzed in terms of cellular uptake and antisense efficacy. The oligo sequence was directed against the p75 nerve growth factor receptor (p75), and was tested in differentiated PC12 cells, which express high levels of this protein. The addition of a single cholesteryl group to the 5'-end significantly increased cellular uptake and improved p75 mRNA downregulation compared with the unmodified PS oligo, However, only a minor degree of downregulation of p75 protein was obtained with 5' cholesteryl oligos, Three different linkers was used to attach the 5' cholesteryl group but were found not to have any impact on efficacy. Addition of a single cholesteryl group to the 3'-end led to greater p75 mRNA downregulation (31%) and p75 protein downregulation (28%) than occurred with the 5' cholesteryl oligos. The biggest improvement in antisense efficacy, both at the mRNA and protein levels, was obtained from the conjugation of cholesterol to both ends of the oligo. One of the bis-cholesteryl oligos was nearly as effective as cycloheximide at decreasing synthesis of p75, The bis-cholesteryl oligos also displayed significant efficacy at 1 mu M, whereas the other oligos required 5 mu M to be effective. The enhanced efficacy of bis-cholesteryl oligos is likely to be due to a combination of enhanced cellular uptake and resistance to both 5' and 3' exonucleases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focused on the DNA-binding activity and protein expression of the transcription factors Egr-1 and Egr-3 in the rat brain cortex and hippocampus after chronic or acute ethanol exposure. DNA-binding activity was reduced in both regions after chronic ethanol exposure and was restored to the level of the pair-fed group at 16 h of withdrawal. Cortical Egr-1 protein levels were not altered by chronic ethanol exposure but increased 16 h after withdrawal, thus mirroring DNA-binding activity. In contrast, Egr-3 protein levels did not undergo any change. There was no change in the level of either protein in the hippocampus. Immunohistochemistry revealed a region-selective change in immunopositive cells in the cortex and hippocampus. Finally, an acute bolus dose of ethanol did not affect Egr DNA-binding activity and ethanol treatment did not alter the DNA-binding activity or protein levels of the transcription factor Spl. These observations suggest that chronic exposure to ethanol has region-selective effects on the DNA-binding activity and protein expression of Egr-1 and Egr-3 transcription factors in the rat brain. These changes occur after prolonged ethanol exposure and may thus reflect neuroadaptive changes associated with physical dependency and withdrawal. These effects are also transcription factor-selective. Clearly, protein expression is not the sole mediator of the changes in DNA-binding activity and chronic ethanol exposure must have effects on modulatory agents of Egr DNA-binding activity. (C) 2000 Elsevier Science Ltd, All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unactivated steroid receptors are chaperoned into a conformation that is optimal for binding hormone by a number of heat shock proteins, including Hsp90, Hsp70, Hsp40, and the immunophilin, FKBP52 (Hsp56). Together with its partner cochaperones, cyclophilin 40 (CyP40) and FKBP51, FKBP52 belongs to a distinct group of structurally related immunophilins that modulate steroid receptor function through their association with Hsp90. Due to the structural similarity between the component immunophilins, FKBP52 and cyclophilin 40, we decided to investigate whether CyP40 is also a heat shock protein. Exposure of MCF-7 breast cancer cells to elevated temperatures (42 degreesC for 3 hours) resulted in a 75-fold increase in CyP40 mRNA levels, but no corresponding increase in CyP40 protein expression, even after 7 hours of heat stress. The use of cycloheximide to inhibit protein synthesis revealed that in comparison to MCF-7 cells cultured at 37 degreesC, those exposed to heat stress (42 degreesC for 3 hours) displayed an elevated rate of degradation of both CyP40 and FKBP52 proteins. Concomitantly, the half-life of the CyP40 protein was reduced from more than 24 hours to just over 8 hours following heat shock. As no alteration in CyP40 protein levels occurred in cells exposed to heat shock, an elevated rate of degradation would imply that CyP40 protein was synthesized at an increased rate. hence the designation of human CyP40 as a heat shock protein. Application of heat stress elicited a marked redistribution of CyP40 protein in MCF-7 cells from a predominantly nucleolar localization, with some nuclear and cytoplasmic staining, to a pattern characterized by a pronounced nuclear accumulation of CyP40, with no distinguishable nucleolar staining. This increase in nuclear CyP40 possibly resulted from a redistribution of cytoplasmic and nucleolar CyP40, as no net increase in CyP40 expression levels occurred in response to stress. Exposure of MCF-7 cells to actinomycin D for 4 hours resulted in the translocation of the nucleolar marker protein, B23, from the nucleolus, with only a small reduction in nucleolar CyP40 levels. Under normal growth conditions, MCF-7 cells exhibited an apparent colocalization of CyP40 and FKBP52 within the nucleolus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modulation of the cytochrome P450 (CYP) monooxygenase system and haem oxygenase by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 Amol/kg body weight, i.p.) of cadmium chloride (CdCl2), at various time points. Total CYP content of liver microsomes decreased significantly (P < 0.05) at 12, 18, and 24 hours (22%, 47%, and 56%, respectively) after treatment. In contrast, progressive increases of hepatic coumarin 7-hydroxylase (COH) activity (indicative of CYP2A5 activity) were observed at 8 hrs (2-fold), 12 hrs (3-fold), and 7-fold at 18 and 24 hrs. Simultaneously, haem oxygenase activity increased significantly at 4 hours and continued to increase progressively to more than 50-fold compared to control. Liver CYP2A5 mRNA levels increased maximally 12 hours after treatment and decreased to almost half 6 hours later, while western blot analysis showed 2- and 3- fold increase in CYP2A5 apoprotein at 12 and 24 hours. The CYP2A5 mRNA levels in the liver increased after Cd treatment in Nrf2 +/+ but not in Nrf2 / mouse. This study demonstrates that hepatic haem oxygenase and CYP2A5 are upregulated by cadmium. The upregulation of haem oxygenase precedes that of CYP2A5. The strong upregulation of the CYP2A5 both at mRNA and enzyme activity levels, with a simultaneous decrease in the total CYP concentration suggest an unusual mode of regulation of CYP2A5 in response to cadmium exposure, amongst the CYP enzymes. The observed increase in the mRNA but not in protein levels after maximal induction may suggest involvement of post-transcriptional mechanisms in the regulation. Upregulation of CYP2A5 by cadmium in the Nrf2 +/+ mice but not in the Nrf2 / mice indicates a role for this transcription factor in the regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BRN2 transcription factor (POU3F2, N-Oct-3) has been implicated in development of the melanocytic lineage and in melanoma. Using a low calcium medium supplemented with stem cell factor, fibroblast growth factor-2, endothelin-3 and cholera toxin, we have established and partially characterised human melanocyte precursor cells, which are unpigmented, contain immature melanosomes and lack L-dihydroxyphenylalanine reactivity. Melanoblast cultures expressed high levels of BRN2 compared to melanocytes, which decreased to a level similar to that of melanocytes when cultured in medium that contained phorbol ester but lacked endothelin-3, stem cell factor and fibroblast growth factor-2. This decrease in BRN2 accompanied a positive L-dihydroxyphenylalanine reaction and induction of melanosome maturation consistent with melanoblast differentiation seen during development. Culture of primary melanocytes in low calcium medium supplemented with stem cell factor, fibroblast growth factor-2 and endothelin-3 caused an increase in BRN2 protein levels with a concomitant change to a melanoblast-like morphology. Synergism between any two of these growth factors was required for BRN2 protein induction, whereas all three factors were required to alter melanocyte morphology and for maximal BRN2 protein expression. These finding implicate BRN2 as an early marker of melanoblasts that may contribute to the hierarchy of melanocytic gene control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutrophilic lung inflammation is an essential component of host defense against diverse eukaryotic and prokaryotic pathogens, but in chronic inflammatory lung diseases, such as chronic obstructive lung disease (COPD), severe asthma, cystic fibrosis, and bronchiolitis, it may damage the host. Glucocorticosteroids are widely used in these conditions and in their infectious exacerbations; however, the clinical efficacy of steroids is disputed. In this study, we used a proteomic approach to identify molecules contributing to neutrophilic inflammation induced by transnasal administration of lipopolysaccharide (LPS) that were also resistant to the potent glucocorticosteroid dexamethasone (Dex). We confirmed that Dex was biologically active at both the transcript (suppression of GM-CSF and TNFalpha transcripts) and protein levels (induction of lipocortin) and used 2D-PAGE/MALDI-TOF to generate global expression profiles, identifying six LPS-induced proteins that were Dex resistant. Of these, S100A8, a candidate neutrophil chemotactic factor, was profiled in detail. Steroid refractory S100A8 expression was highly abundant, transcriptionally regulated, secreted into lung lavage fluid and immunohistochemically localized to tissue infiltrating neutrophils. However, in marked contrast to other vascular beds, neutralizing antibodies to S100A8 had only a weak anti-neutrophil recruitment effect and antibodies against the related S100A9 were ineffective. These data highlight the need for extensive in vivo profiling of proteomically identified candidate molecules and demonstrates that S100A8, despite its abundance, resistance to steroids and known chemotactic activity, is unlikely to be an important determinant of LPS-induced neutrophilic lung inflammation in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Establishment of long-term potentiation (LTP) at perforant path synapses is highly correlated with increased expression of Egr and AP-1 transcription factors in rat dentate gyrus granule cells. We have investigated whether increased transcription factor levels are reflected in increased transcription factor activity by assessing Egr and AP-I DNA binding activity using gel shift assays. LTP produced an increase in binding to the Egr element, which was NMDA receptor-dependent and correlated closely with our previously reported increase in Egr-1 (zif/268) protein levels. Supershift analysis confirmed involvement of Egr-1, but not Egr-2 in the DNA binding activity. AP-1 DNA binding was also rapidly elevated in parallel with protein levels, however, the peak increase in activity was delayed until 4 h, a time point when we have previously shown that only jun-D protein was elevated. These data indicate that binding of Egr-1 and AP-1 to their response elements is increased in two phases. This may result in activation of distinct banks of target genes which contribute to the establishment of persistent LTP. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 75 kD low-affinity neurotrophin receptor (p75(NTR)) is expressed in developing and axotomised spinal motor neurons. There is now convincing evidence that p75NTR can, under some circumstances, become cytotoxic and promote neuronal cell death. We report here that a single application of antisense p75(NTR) oligodeoxynucleotides to the proximal nerve stumps of neonatal rats significantly reduces the loss of axotomised motor neurons compared to controls treated with nonsense oligodeoxynucleotides or phosphate-buffered saline. Our investigations also show that daily systemic intraperitoneal injections of antisense p75(NTR) oligodeoxynucleotides for 14 days significantly reduce the loss of axotomised motor neurons compared to controls. Furthermore, we found that systemic delivery over a similar period continues to be effective following axotomy when intraperitoneal injections were 1) administered after a delay of 24 hr, 2) limited to the first 7 days, or 3) administered every third day. In addition, p75(NTR) protein levels were reduced in spinal motor neurons following treatment with antisense p75(NTR) oligodeoxynucleotides. There were also no obvious side effects associated with antisense p75(NTR) oligodeoxynucleotide treatments as determined by behavioural observations and postnatal weight gain. Our findings indicate that antisense-based strategies could be a novel approach for the prevention of motor neuron degeneration associated with injuries or disease. (C) 2001 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The beta subunit of the Escherichia coli replicative DNA polymerase III holoenzyme is the sliding clamp that interacts with the alpha (polymerase) subunit to maintain the high processivity of the enzyme. The beta protein is a ring-shaped dimer of 40.6 kDa subunits whose structure has previously been determined at a resolution of 2.5 Angstrom [Kong et al. (1992), Cell, 69, 425-437]. Here, the construction of a new plasmid that directs overproduction of beta to very high levels and a simple procedure for large-scale purification of the protein are described. Crystals grown under slightly modified conditions diffracted to beyond 1.9 Angstrom at 100 K at a synchrotron source. The structure of the beta dimer solved at 1.85 Angstrom resolution shows some differences from that reported previously. In particular, it was possible at this resolution to identify residues that differed in position between the two subunits in the unit cell; side chains of these and some other residues were found to occupy alternate conformations. This suggests that these residues are likely to be relatively mobile in solution. Some implications of this flexibility for the function of beta are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chloramphenicol acetyl transferase (CAT) protein and mRNA levels in E. coli were determined following induction of a tac::cat construct by isopropyl-beta-thiogalactopyranoside (IPTG). High cat mRNA levels did not directly reflect CAT protein levels, in either shakeflask experiments or fermentations. Furthermore, concentrations of IPTG resulting in the highest levels of expression of cat mRNA, were different to those resulting in highest levels of CAT protein. The data suggest that high transcriptional activities lead to limitations at the translational level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

GH actions are dependent on receptor dimerization. The GH receptor antagonist, B2036-PEG, has been developed for treating acromegaly. B2036 has mutations in site 1 to enhance receptor binding and in site 2 to block receptor dimerization. Pegylation (B2036-PEG) increases half-life and lowers immunogenicity, but high concentrations are required to control insulin-like growth factor-I levels. We examined antagonist structure and function and the impact of pegylation on biological efficacy. Unpegylated B2036 had a 4.5-fold greater affinity for GH binding protein (GHBP) than GH but similar affinity for membrane receptor. Pegylation substantially reduced membrane binding affinity and receptor antagonism, as assessed by a transcription assay, by 39- and 20-fold, respectively. GHBP reduced antagonist activity of unpegylated B2036 but did not effect antagonism by B2036-PEG. B2036 down-regulated receptors, and membrane binding sites doubled in the presence of dimerization-blocking antibodies, suggesting that B2036 binds to a receptor dimer. It is concluded that the high concentration requirement of B2036-PEG for clinical efficacy relates to pegylation, which decreases binding to membrane receptor but has the advantages of reduced clearance, immunogenicity, and interactions with GHBP. Our studies suggest that B2036 binds to a receptor dimer and induces internalization but not signaling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study was undertaken to assess associations between age, gender, cigarette smoke and non-workplace cadmium exposure, and liver pathology and inter-individual variation in cytochrome P450 (CYP) expression in human tissues. Autopsy specimens of twenty-eight Queensland residents whose ages ranged from 3 to 89 years were analyzed for the presence of nine CYP protein isoforms by immunoblotting. All subjects were Caucasians and their liver cadmium contents ranged from 0.11 to 3.95 kg/g wet weight, while their kidney cadmium contents were in the range of 2 to 63 mug/g wet weight. CYP1A2, CYP2A6, CYP2D6, CYP3A4, and CYP3A5 were detected in liver but not in kidney, and CYP1A1 and CYP1B1 were not found in liver or kidney. Lowered liver CYP2C8/19 protein contents were found to be associated with liver pathology. Importantly, we show elevated levels of CYP2C9 protein to be associated with cadmium accumulation in liver. No mechanism that explains this association is apparent, but there are two possibilities that require further study. One is that variation in CYP2C9 protein levels may be, in part, attributed to an individual's non-workplace exposure to cadmium, or an individual's CYP2C9 genotype may be a risk factor for cadmium accumulation. A positive correlation was found between liver CYP3A4 protein and subject age. Levels of liver CYPIA2 protein, but not other CYP forms, were increased in people more exposed to cigarette smoke, but there was no association between CYPIA2 protein and cadmium. CYP2A6 protein was found in all liver samples and CYP2A6 gene typing indicated the absence of CYP2A6 null allele (CYP2A6(D)) in this sample group, confirming very low prevalence of homozygous CYP2A6(D) in Caucasians. CYP2A6 gene types W/W, WIC, and CIC were not associated with variations in liver microsomal CYP2A6 protein. CYP2D6 protein was absent in all twenty-five kidney samples tested but was detectable in liver samples of all but two subjects, indicating the prevalence of the CYP2D6 null allele (CYP2D6(D)) in this sample group to be about 7%, typical of Caucasian populations. (C) 2001 Elsevier Science Inc. All rights reserved.