7 resultados para Exposed temperature

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the behavioural responses of two gobiid fish species to temperature to determine if differences in behaviour and ventilation rate might explain any apparent vertical zonation. A survey of the shore at Manly, Moreton Bay revealed Favonigobius exquisitus to dominate the lower shore and Pseudogobius sp. 4 the upper shore. These species were exposed to a range of temperatures (15-40 degreesC) in aquaria for up to 6 h. At 20 degreesC F. exquisitus exhibited a mean gill ventilation rate of 26 +/- 1.4 bpm (beats per minute) differing significantly from Pseudogobius, which ventilated at a fivefold greater rate of 143 +/- 6 bpm. The ventilation rate in F. exquisitus underwent a fivefold increase from normal local water temperature (20 degreesC) to high temperature (35 degreesC) conditions, whereas that of Pseudogobius did not even double, suggesting that Pseudogobius sp. is a better thermal regulator than F. exquisitus. While both species emerged from the water at high temperatures (>30 degreesC) the behaviours they exhibited while immersed at high temperature were quite different. F. exquisitus undertook vertical displacement movements we interpret as an avoidance response, whereas Pseudogobius sp. appeared to use a coping strategy involving movements that might renew the water mass adjacent to its body. The thermal tolerances and behaviours of F. exquisitus and Pseudogobius sp. are in broad agreement with their vertical distribution on the shore.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bt transgenic cotton has not shown the same level of resistance to bollworm in China, as in other major Bt cotton growing areas of the world. The objective of this study was to investigate the effects of high temperature on the CryIA insecticidal protein content and nitrogen metabolism, in the leaf of Bt transgenic cotton. The study was undertaken on two transgenic cotton cultivars, one conventional (Xinyang 822) and the other a hybrid (Kumian No. 1), during the 2001 and 2002 growing seasons at the Yangzhou University Farm, Yangzhou, China. In the 2001 study, potted cotton plants were exposed to 37 C for 24 h under glasshouse conditions at three growth stages peak square, peak flowering and peak boll developing periods. Based on the 2001 results, in 2002 the same two cultivars were exposed to the same temperature for 48 h at two growth stages-peak flowering and boll developing periods. The results of the study indicated that the insecticidal protein content of the leaf was not significantly affected by the stress during the square and flowering periods. However, exposure to high temperature for 24h during the boll period reduced the CryIA protein content by approximately 51% in the cultivar Kumian No 1, and 30% in Xinyang 822 in the 2001 study, and by approximately 73 and 63% for 48 h with the same cultivars, respectively, in the 2002 study. Glutamic-pyruvic transaminase (GPT) activity, total free amino acid and soluble protein content, and the activity of protease in the leaf, showed relatively little change in response to high temperature in the flowering period. However, exposure to high temperature in the boll period resulted in the following changes - a reduction of GPT activity, a sharp increase in free amino acid content, a significant decrease in soluble protein content, and significant increases in the activity of protease. The results suggest that high temperature may result in the degradation of soluble protein in the leaf, with a resulting decline in the level of the toxin CryIA. It is believed that this may be the cause of the reduced efficacy of Bt cotton in growing conditions in China, where temperatures during the boll period often reach 36-40° C. © 2004 Elsevier B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the functional consequences of temperature variation have been examined for a wide range of whole-animal performance traits, the implications of thermal variation for reproductive behaviour or performance are poorly known. I examined the acute effects of temperature on the mating behaviour and swimming performance of male eastern mosquitofish, Gambusia holbrooki, which rely on a coercive strategy to obtain matings and are routinely exposed to wide daily temperature fluctuations. Males showed reproductive behaviours across the entire test temperature range of 14-38 degrees C, representing one of the widest reproductively active temperature ranges for any ectotherm. Both the time spent in pursuit of females and the total number of mating attempts increased with temperature to a plateau that started at approximately 22-26 degrees C. However, males maintained a constant level of copulations at 18-34 degrees C, the temperature range they routinely experience in southeast Queensland. In contrast, maximum swimming performance and approach speeds during copulations were highly thermally dependent across this temperature range. Thus, acute temperature variation has important fitness implications for male G. holbrooki, but mating performance was significantly limited only at extreme temperatures. (c) 2005 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photosynthetic endolithic algae and cyanobacteria live within the skeletons of many scleractinians. Under normal conditions, less than 5% of the photosynthetically active radiation (PAR) reaches the green endolithic algae because of the absorbance of light by the endosymbiotic dinoflagellates and the carbonate skeleton. When corals bleach (loose dinoflagellate symbionts), however, the tissue of the corals become highly transparent and photosynthetic microendoliths may be exposed to high levels of both thermal and solar stress. This study explores the consequence of these combined stresses on the phototrophic endoliths inhabiting the skeleton of Montipora monasteriata, growing at Heron Island, on the southern Great Barrier Reef. Endoliths that were exposed to sun after tissue removal were by far more susceptible to thermal photoinhibition and photo-damage than endoliths under coral tissue that contained high concentrations of brown dinoflagellate symbionts. While temperature or light alone did not result in decreased photosynthetic efficiency of the endoliths, combined thermal and solar stress caused a major decrease and delayed recovery. Endoliths protected under intact tissue recovered rapidly and photoacclimated soon after exposure to elevated sea temperatures. Endoliths under naturally occurring bleached tissue of M. monasteriata colonies (bleaching event in March 2004 at Heron Island) acclimated to increased irradiance as the brown symbionts disappeared. We suggest that two major factors determine the outcome of thermal bleaching to the endolith community. The first is the microhabitat and light levels under which a coral grows, and the second is the susceptibility of the coral-dinoflagellates symbiosis to thermal stress. More resistant corals may take longer to bleach allowing endoliths time to acclimate to a new light environment. This in turn may have implications for coral survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oilseed rape (Brassica napus) is sensitive to low boron (B) supply, and its growth response to B may be influenced by soil temperature. To test the relationship between B and temperature, oilseed rape (cv. Hyola 42) seedlings were grown at 10 degrees C (low) root zone temperature (RZT) with B supply from deficient to adequate B levels until growth of low B plants just began to slow down. Half of the pots were then transferred to 20 degrees C (warm) RZT for 11 days before they were moved back to 10 degrees C RZT for the final 4 days. Both plant dry mass and B uptake increased after plants were exposed to warm RZT. However, plant B deficiency was exacerbated by warm RZT in low B plants because of increased relative growth rate and shoot-root ratio without a commensurate increase in B uptake rate. It is concluded that RZT above the critical threshold for chilling injury in oilseed rape can nevertheless affect the incidence of B deficiency by altering shoot-root ratio and hence the balance between shoot B demand and B uptake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incubation temperature influences hatchling phenotypes such as sex, size, shape, color, behavior, and locomotor performance in many reptiles, and there is growing concern that global warming might adversely affect reptile populations by altering frequencies of hatchling phenotypes. Here I overview a recent theoretical model used to predict hatchling sex of reptiles with temperature-dependent sex determination. This model predicts that sex ratios will be fairly robust to moderate global warming as long as eggs experience substantial daily cyclic fluctuations in incubation temperatures so that embryos are exposed to temperatures that inhibit embryonic development for part of the day. I also review studies that examine the influence of incubation temperature on posthatch locomotion performance and growth because these are the traits that are likely to have the greatest effect on hatchling fitness. The majority of these studies used artificial constant-temperature incubation, but some have addressed fluctuating incubation temperature regimes. Although the number of studies is small, it appears that fluctuating temperatures may enhance hatchling locomotor performance. This finding should not be surprising, given that the majority of natural reptile nests are relatively shallow and therefore experience daily fluctuations in incubation temperature.