35 resultados para Exploration mode
em University of Queensland eSpace - Australia
Resumo:
Control of chaos in the single-mode optically pumped far-infrared (NH3)-N-15 laser is experimentally demonstrated using continuous time-delay control. Both the Lorenz spiral chaos and the detuned period-doubling chaos exhibited by the laser have been controlled. While the laser is in the Lorenz spiral chaos regime the chaos has been controlled both such that the laser output is cw, with corrections of only a fraction of a percent necessary to keep it there, and to period one. The laser has also been controlled while in the period-doubling chaos regime, to both the period-one and -two states.
Resumo:
A set of five tasks was designed to examine dynamic aspects of visual attention: selective attention to color, selective attention to pattern, dividing and switching attention between color and pattern, and selective attention to pattern with changing target. These varieties of visual attention were examined using the same set of stimuli under different instruction sets; thus differences between tasks cannot be attributed to differences in the perceptual features of the stimuli. ERP data are presented for each of these tasks. A within-task analysis of different stimulus types varying in similarity to the attended target feature revealed that an early frontal selection positivity (FSP) was evident in selective attention tasks, regardless of whether color was the attended feature. The scalp distribution of a later posterior selection negativity (SN) was affected by whether the attended feature was color or pattern. The SN was largely unaffected by dividing attention across color and pattern. A large widespread positivity was evident in most conditions, consisting of at least three subcomponents which were differentially affected by the attention conditions. These findings are discussed in relation to prior research and the time course of visual attention processes in the brain. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
OBJECTIVE To describe heterogeneity of HIV prevalence among pregnant women in Hlabisa health district, South Africa and to correlate this with proximity of homestead to roads. METHODS HIV prevalence measured through anonymous surveillance among pregnant women and stratified by local village clinic. Polygons were created around each clinic, assuming women attend the clinic nearest their home. A geographical information system (GIS) calculated the mean distance from homesteads in each clinic catchment to nearest primary (1 degrees) and to nearest primary or secondary (2 degrees) road. RESULTS We found marked HIV heterogeneity by clinic catchment (range 19-31% (P < 0.001). A polygon plot demonstrated lower HIV prevalence in catchments remote from 1 degrees roads. Mean distance from homesteads to nearest 1 degrees or 2 degrees road varied by clinic catchment from 1623 to 7569 m. The mean distance from homesteads to a 1 degrees or 2 degrees road for each clinic catchment was strongly correlated with HIV prevalence (r = 0.66; P = 0.002). CONCLUSIONS The substantial HIV heterogeneity in this district is closely correlated with proximity to a 1 degrees or 2 degrees road. GIS is a powerful tool to demonstrate and to start to analyse this observation. Further research is needed to better understand this relationship both at ecological and individual levels, and to develop interventions to reduce the spread of HIV infection.
Resumo:
Hydrothermal alteration of a quartz-K-feldspar rock is simulated numerically by coupling fluid flow and chemical reactions. Introduction of CO2 gas generates an acidic fluid and produces secondary quartz, muscovite and/or pyrophyllite at constant temperature and pressure of 300 degrees C and 200 MPa. The precipitation and/or dissolution of the secondary minerals is controlled by either mass-action relations or rate laws. In our simulations the mass of the primary elements are conserved and the mass-balance equations are solved sequentially using an implicit scheme in a finite-element code. The pore-fluid velocity is assumed to be constant. The change of rock volume due to the dissolution or precipitation of the minerals, which is directly related to their molar volume, is taken into account. Feedback into the rock porosity and the reaction rates is included in the model. The model produces zones of pyrophyllite quartz and muscovite due to the dissolution of K-feldspar. Our model simulates, in a simplified way, the acid-induced alteration assemblages observed in various guises in many significant mineral deposits. The particular aluminosilicate minerals produced in these experiments are associated with the gold deposits of the Witwatersrand Basin.
Resumo:
Spinosad, applied as a jetting solution or dip is an efficacious, non-systemic treatment for the control of Bovicola ovis in sheep. This paper describes the effect of back-line treatment width and group housing of animals on the efficacy of spinosad for the control of lice. A 0.4 mg/kg liveweight dose was found to be the suboptimal dose of spinosad for the control of body lice in a dose titration study and was used to investigate application and housing effects in a second study. Lousy Merino sheep were treated with either a narrow 3-cm application of spinosad or with a wider 25-cm swathe. After treatment they were either kept alone or in groups of 6 sheep per pen. Lice were counted at day 0 and every 14 days to 70 days after treatment before estimation of the percentage of lice control and analysis of treatment effects. A much higher percentage of lice control was achieved with 0.4 mg/kg in the second study than in the first, possibly because of differences in formulation used. The wider application width gave significantly higher (P < 0.05) control of lice than the narrow application when sheep were either housed alone or in groups up to day 42 post-treatment. Greater control of lice was seen in group-housed sheep compared with sheep housed individually (P < 0.05) up to day 70. Using broader application widths combined with holding the animals together after treatment with pour-on formulations may optimise the delivery and efficacy of ectoparasiticides for livestock.
Resumo:
We present results from both theoretical and experimental studies of the noise characteristics of mode-locked superfluorescent lasers. The results show that observed macroscopic broadband amplitude noise on the laser pulse train has its origin in quantum noise-initiated ''phase-wave'' fluctuations, and we find an associated phase transition in the noise characteristics as a function of laser cavity detuning.
Resumo:
The quasi mode theory of macroscopic quantization in quantum optics and cavity QED developed by Dalton, Barnett and Knight is generalized. This generalization allows for cases in which two or more quasi permittivities, along with their associated mode functions, are needed to describe the classical optics device. It brings problems such as reflection and refraction at a dielectric boundary, the linear coupler, and the coupling of two optical cavities within the scope of the theory. For the most part, the results that are obtained here are simple generalizations of those obtained in previous work. However the coupling constants, which are of great importance in applications of the theory, are shown to contain significant additional terms which cannot be 'guessed' from the simpler forms. The expressions for the coupling constants suggest that the critical factor in determining the strength of coupling between a pair of quasi modes is their degree of spatial overlap. In an accompanying paper a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary is given as an illustration of the generalized theory. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes.
Resumo:
The generalization of the quasi mode theory of macroscopic quantization in quantum optics and cavity QED presented in the previous paper, is applied to provide a fully quantum theoretic derivation of the laws of reflection and refraction at a boundary. The quasi mode picture of this process involves the annihilation of a photon travelling in the incident region quasi mode, and the subsequent creation of a photon in either the incident region or transmitted region quasi modes. The derivation of the laws of reflection and refraction is achieved through the dual application of the quasi mode theory and a quantum scattering theory based on the Heisenberg picture. Formal expressions from scattering theory are given for the reflection and transmission coefficients. The behaviour of the intensity for a localized one photon wave packet coming in at time minus infinity from the incident direction is examined and it is shown that at time plus infinity, the light intensity is only significant where the classical laws of reflection and refraction predict. The occurrence of both refraction and reflection is dependent upon the quasi mode theory coupling constants between incident and transmitted region quasi modes being nonzero, and it is seen that the contributions to such coupling constants come from the overlap of the mode functions in the boundary layer region, as might be expected from a microscopic theory.