7 resultados para Exit Ramps.

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical usefulness of hemodialysis catheters is limited by increased infectious morbidity and mortality. Topical antiseptic agents, such as mupirocin, are effective at reducing this risk but have been reported to select for antibiotic-resistant strains. The aim of the present study was to determine the efficacy and the safety of exit-site application of a standardized antibacterial honey versus mupirocin in preventing catheter-associated infections. A randomized, controlled trial was performed comparing the effect of thrice-weekly exit-site application of Medihoney versus mupirocin on infection rates in patients who were receiving hemodialysis via tunneled, cuffed central venous catheters. A total of 101 patients were enrolled. The incidences of catheter-associated bacteremias in honey-treated (n = 51) and mupirocin-treated (n = 50) patients were comparable (0.97 versus 0.85 episodes per 1000 catheter-days, respectively; NS). On Cox proportional hazards model analysis, the use of honey was not significantly associated with bacteremia-free survival (unadjusted hazard ratio, 0.94; 95% confidence interval, 0.27 to 3.24; P = 0.92). No exit-site infections occurred. During the study period, 2% of staphylococcal isolates within the hospital were mupirocin resistant. Thrice-weekly application of standardized antibacterial honey to hemodialysis catheter exit sites was safe, cheap, and effective and resulted in a comparable rate of catheter-associated infection to that obtained with mupirocin (although the study was not adequately powered to assess therapeutic equivalence). The effectiveness of honey against antibiotic-resistant microorganisms and its low likelihood of selecting for further resistant strains suggest that this agent may represent a satisfactory alternative means of chemoprophylaxis in patients with central venous catheters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coupling of sandy beach aquifers with the swash zone in the vicinity of the water table exit point is investigated through simultaneous measurements of the instantaneous shoreline (swash front) location, pore pressures and the water table exit point. The field observations reveal new insights into swash-aquifer coupling not previously gleaned from measurements of pore pressure only. In particular, for the case where the exit point is seaward of the observation point, the pore pressure response is correlated with the distance between the exit point and the shoreline in that when the distance is large the rate of pressure drop is fast and when the distance is small the rate decreases. The observations expose limitations in a simple model describing exit point dynamics which is based only on the force balance on a particle of water at the sand surface and neglects subsurface pressures. A new modified form of the model is shown to significantly improve the model-data comparison through a parameterization of the effects of capillarity into the aquifer storage coefficient. The model enables sufficiently accurate predictions of the exit point to determine when the swash uprush propagates over a saturated or a partially saturated sand surface, potentially an important factor in the morphological evolution of the beach face. Observations of the shoreward propagation of the swash-induced pore pressure waves ahead of the runup limit shows that the magnitude of the pressure fluctuation decays exponentially and that there is a linear increase in time lags, behavior similar to that of tidally induced water table waves. The location of the exit point and the intermittency of wave runup events is also shown to be significant in terms of the shore-normal energy distribution. Seaward of the mean exit point location, peak energies are small because of the saturated sand surface within the seepage face acting as a "rigid lid'' and limiting pressure fluctuations. Landward of the mean exit point the peak energies grow before decreasing landward of the maximum shoreline position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the refinement of exceptions. We extend the Guarded Command Language normally used in the refinement calculus, with a simple exception handling statement, which we model using King and Morgan's exit statement (1995). We derive some variants of King and Morgan's refinement laws for their exit statement, and illustrate the approach with an example of a refinement of a simple program.