2 resultados para Exelon Braidwood Nuclear Facility (Will County, Ill.)
em University of Queensland eSpace - Australia
Resumo:
In this paper, numerical simulations are used in an attempt to find optimal Source profiles for high frequency radiofrequency (RF) volume coils. Biologically loaded, shielded/unshielded circular and elliptical birdcage coils operating at 170 MHz, 300 MHz and 470 MHz are modelled using the FDTD method for both 2D and 3D cases. Taking advantage of the fact that some aspects of the electromagnetic system are linear, two approaches have been proposed for the determination of the drives for individual elements in the RF resonator. The first method is an iterative optimization technique with a kernel for the evaluation of RF fields inside an imaging plane of a human head model using pre-characterized sensitivity profiles of the individual rungs of a resonator; the second method is a regularization-based technique. In the second approach, a sensitivity matrix is explicitly constructed and a regularization procedure is employed to solve the ill-posed problem. Test simulations show that both methods can improve the B-1-field homogeneity in both focused and non-focused scenarios. While the regularization-based method is more efficient, the first optimization method is more flexible as it can take into account other issues such as controlling SAR or reshaping the resonator structures. It is hoped that these schemes and their extensions will be useful for the determination of multi-element RF drives in a variety of applications.
Resumo:
Research has suggested that understanding in well-structured settings often does not transfer to the everyday, less-structured problems encountered outside of school. Little is known, beyond anecdotal evidence, about how teachers' consideration of distributions as evidence in well-structured settings compares with their use in ill-structured problem contexts. A qualitative study of preservice secondary teachers examined their use of distributions as evidence in four tasks of varying complexity and ill-structuredness. Results suggest that teachers' incorporation of distributions in well-structured settings does not imply that they will be incorporated in less structured problems (and vice-versa). Implications for research and teaching are discussed.