110 resultados para Evolutionary rate
em University of Queensland eSpace - Australia
Resumo:
Ten microsatellite loci are described in Araucaria cunninghamii, the first reported in the Araucariaceae. Eight were tested in sections Eutacta and Bunya, which diverged more than 200 MYA, and to the sister genus Agathis. Specific amplification products within the expected size range were obtained for six to eight loci in section Eutacta (depending on species), five loci in section Bunya and three. loci in Agathis. Two of the loci (CRCAc1 and CRCAc2, both GA repeats) produced specific amplification products in all taxa, with orthology confirmed by sequence analysis. The repeats were perfect in all taxa. The flanking sequences were extremely conserved, with sequence divergence of 0% to 2.0% within Araucaria species and 2.9% to 7.5% between Araucaria and Agathis. These microsatellites represent some of the most conserved microsatellite loci reported in plants. This may be due to a low evolutionary rate in Araucariaceae genome or the loci may be closely associated with highly conserved, unreported genes.
Resumo:
Life history has been implicated as a determinant of variation in rate of molecular evolution amongst vertebrate species because of a negative correlation between bode size and substitution rate for many Molecular data sets. Both the generality and the cause of the negative bode size trend have been debated, and the validity of key studies has been questioned (particularly concerning the failure to account for phylogenetic bias). In this study, a comparative method has been used to test for an association between a range of life-history variables-such as body size age at maturity, and clutch size-and DNA substitution rate for three genes (NADH4, cytochrome b, and c-mos). A negative relationship between body size and rate of molecular evolution was found for phylogenetically independent pairs of reptile species spanning turtles. lizards. snakes, crocodile, and tuatara. Although this Study was limited by the number of comparisons for which both sequence and lite-history data were available, the results, suggest that a negative bode size trend in rate of molecular evloution may be a general feature of reptile molecular evolution. consistent with similar studies of mammals and birds. This observation has important implications for uncovering the mechanisms of molecular evolution and warns against assuming that related lineages will share the same substitution rate (a local molecular clock) in order to date evolutionary divergences from DNA sequences.
Resumo:
The effect of heating and cooling on heart rate in the estuarine crocodile Crocodylus porosus was studied in response to different heat transfer mechanisms and heat loads. Three heating treatments were investigated. C. porosus were: (1) exposed to a radiant heat source under dry conditions; (2) heated via radiant energy while half-submerged in flowing water at 23degreesC and (3) heated via convective transfer by increasing water temperature from 23degreesC to 35degreesC. Cooling was achieved in all treatments by removing the heat source and with C. porosus half-submerged in flowing water at 23degreesC. In all treatments, the heart rate of C. porosus increased markedly in response to heating and decreased rapidly with the removal of the heat source. Heart rate during heating was significantly faster than during cooling at any given body temperature, i.e. there was a significant heart rate hysteresis. There were two identifiable responses to heating and cooling. During the initial stages of applying or removing the heat source, there was a dramatic increase or decrease in heart rate ('rapid response'), respectively, indicating a possible cardiac reflex. This rapid change in heart rate with only a small change or no change in body temperature (
Resumo:
Australian sugar-producing regions have differed in terms of the extent and rate of incorporation of new technology into harvesting systems. The Mackay sugar industry has lagged behind most other sugar-producing regions in this regard. The reasons for this are addressed by invoking an evolutionary economics perspective. The development of harvesting systems, and the role of technology in shaping them, is mapped and interpreted using the concept of path dependency. Key events in the evolution of harvesting systems are identified, which show how the past has shaped the regional development of harvesting systems. From an evolutionary economics perspective, the outcomes observed are the end result of a specific history.
Resumo:
There is a wealth of literature documenting a directional change of body size in heavily harvested populations. Most of this work concentrates on aquatic systems, but terrestrial populations are equally at risk. This paper explores the capacity of harvest refuges to counteract potential effects of size-selective harvesting on the allele frequency,of populations. We constructed a stochastic, individual-based model parameterized with data on red kangaroos. Because we do not know which part of individual growth would change in the course of natural selection, we explored the effects of two alternative models of individual growth in which alleles affect either the growth rate or the maximum size. The model results show that size-selective harvesting can result in significantly smaller kangaroos for a given age when the entire population is subject to harvesting. In contrast, in scenarios that include dispersal from harvest refuges, the initial allele frequency remains virtually unchanged.
Resumo:
Genetic assignment methods use genotype likelihoods to draw inference about where individuals were or were not born, potentially allowing direct, real-time estimates of dispersal. We used simulated data sets to test the power and accuracy of Monte Carlo resampling methods in generating statistical thresholds for identifying F-0 immigrants in populations with ongoing gene flow, and hence for providing direct, real-time estimates of migration rates. The identification of accurate critical values required that resampling methods preserved the linkage disequilibrium deriving from recent generations of immigrants and reflected the sampling variance present in the data set being analysed. A novel Monte Carlo resampling method taking into account these aspects was proposed and its efficiency was evaluated. Power and error were relatively insensitive to the frequency assumed for missing alleles. Power to identify F-0 immigrants was improved by using large sample size (up to about 50 individuals) and by sampling all populations from which migrants may have originated. A combination of plotting genotype likelihoods and calculating mean genotype likelihood ratios (D-LR) appeared to be an effective way to predict whether F-0 immigrants could be identified for a particular pair of populations using a given set of markers.
Resumo:
The molecular clock does not tick at a uniform rate in all taxa but maybe influenced by species characteristics. Eusocial species (those with reproductive division of labor) have been predicted to have faster rates of molecular evolution than their nonsocial relatives because of greatly reduced effective population size; if most individuals in a population are nonreproductive and only one or few queens produce all the offspring, then eusocial animals could have much lower effective population sizes than their solitary relatives, which should increase the rate of substitution of nearly neutral mutations. An earlier study reported faster rates in eusocial honeybees and vespid wasps but failed to correct for phylogenetic nonindependence or to distinguish between potential causes of rate variation. Because sociality has evolved independently in many different lineages, it is possible to conduct a more wide-ranging study to test the generality of the relationship. We have conducted a comparative analysis of 25 phylogenetically independent pairs of social lineages and their nonsocial relatives, including bees, wasps, ants, termites, shrimps, and mole rats, using a range of available DNA sequences (mitochondrial and nuclear DNA coding for proteins and RNAs, and nontranslated sequences). By including a wide range of social taxa, we were able to test whether there is a general influence of sociality on rates of molecular evolution and to test specific predictions of the hypothesis: (1) that social species have faster rates because they have reduced effective population sizes; (2) that mitochondrial genes would show a greater effect of sociality than nuclear genes; and (3) that rates of molecular evolution should be correlated with the degree of sociality. We find no consistent pattern in rates of molecular evolution between social and nonsocial lineages and no evidence that mitochondrial genes show faster rates in social taxa. However, we show that the most highly eusocial Hymenoptera do have faster rates than their nonsocial relatives. We also find that social parasites (that utilize the workers from related species to produce their own offspring) have faster rates than their social relatives, which is consistent with an effect of lower effective population size on rate of molecular evolution. Our results illustrate the importance of allowing for phylogenetic nonindependence when conducting investigations of determinants of variation in rate of molecular evolution.
Resumo:
Over the last 50 yr, thermal biology has shifted from a largely physiological science to a more integrated science of behavior, physiology, ecology, and evolution. Today, the mechanisms that underlie responses to environmental temperature are being scrutinized at levels ranging from genes to organisms. From these investigations, a theory of thermal adaptation has emerged that describes the evolution of thermoregulation, thermal sensitivity, and thermal acclimation. We review and integrate current models to form a conceptual model of coadaptation. We argue that major advances will require a quantitative theory of coadaptation that predicts which strategies should evolve in specific thermal environments. Simply combining current models, however, is insufficient to understand the responses of organisms to thermal heterogeneity; a theory of coadaptation must also consider the biotic interactions that influence the net benefits of behavioral and physiological strategies. Such a theory will be challenging to develop because each organism's perception of and response to thermal heterogeneity depends on its size, mobility, and life span. Despite the challenges facing thermal biologists, we have never been more pressed to explain the diversity of strategies that organisms use to cope with thermal heterogeneity and to predict the consequences of thermal change for the diversity of communities.
Resumo:
The primary objective of this study was to assess the lingual kinematic strategies used by younger and older adults to increase rate of speech. It was hypothesised that the strategies used by the older adults would differ from the young adults either as a direct result of, or in response to a need to compensate for, age-related changes in the tongue. Electromagnetic articulography was used to examine the tongue movements of eight young (M526.7 years) and eight older (M567.1 years) females during repetitions of /ta/ and /ka/ at a controlled moderate rate and then as fast as possible. The younger and older adults were found to significantly reduce consonant durations and increase syllable repetition rate by similar proportions. To achieve these reduced durations both groups appeared to use the same strategy, that of reducing the distances travelled by the tongue. Further comparisons at each rate, however, suggested a speed-accuracy trade-off and increased speech monitoring in the older adults. The results may assist in differentiating articulatory changes associated with normal aging from pathological changes found in disorders that affect the older population.
Resumo:
Tonic immobility was induced in black tipped reef sharks (Carcharhinus melanoptera) and heart rate and ventral aortic blood pressure recorded. Without branchial irrigation, tonic immobility was correlated with a significant depression in blood pressure and heart rate irrespective of the sharks being in air or in water. Tonic immobility with branchial irrigation resulted in a significant increase in blood pressure in sharks in air, but not in water. Heart rate was unchanged when the gills were irrigated. Intra-arterial injections of atropine abolished the bradycardia and blood pressure rise associated with tonic immobility. We conclude that, during tonic immobility, sharks are able to receive afferent information from the ventilatory system and make appropriate responses via the vagus nerve.
Resumo:
In mapping the evolutionary process of online news and the socio-cultural factors determining this development, this paper has a dual purpose. First, in reworking the definition of “online communication”, it argues that despite its seemingly sudden emergence in the 1990s, the history of online news started right in the early days of the telegraphs and spread throughout the development of the telephone and the fax machine before becoming computer-based in the 1980s and Web-based in the 1990s. Second, merging macro-perspectives on the dynamic of media evolution by DeFleur and Ball-Rokeach (1989) and Winston (1998), the paper consolidates a critical point for thinking about new media development: that something technically feasible does not always mean that it will be socially accepted and/or demanded. From a producer-centric perspective, the birth and development of pre-Web online news forms have been more or less generated by the traditional media’s sometimes excessive hype about the power of new technologies. However, placing such an emphasis on technological potentials at the expense of their social conditions not only can be misleading but also can be detrimental to the development of new media, including the potential of today’s online news.
Resumo:
The Lake Eacham rainbowfish (Melanotaenia eachamensis) was declared extinct in the wild in the late 1980s after it disappeared from its only known locality, an isolated crater lake in northeast Queensland. Doubts have been raised about whether this taxon is distinct from surrounding populations of the eastern rainbowfish (Melanotaenia splendida splendida). We examined the evolutionary distinctiveness of M. eachamensis, obtained from captive stocks, relative to M. s. splendida through analysis of variation in mtDNA sequences, nuclear microsatellites, and morphometric characters Captive M. eachamensis had mtDNAs that were highly divergent from those in most populations of M. s. splendida. A broader geographic survey using RFLPs revealed some populations initially identified as M. s. splendida, that carried eachamensis mtDNA, whereas some others had mixtures of eachamensis and splendida mtDNA. The presence of eachamensis-like mtDNA in these populations could in principle be due to (1) sorting of ancestral polymorphisms, (2) introgression of M. eachamensis mtDNA into M. s. splendida, or (3) incorrect species boundaries, such that some populations currently assigned to M. s. splendida are M. eachamensis or are mixtures of the two species. These alternatives hypotheses were evaluated through comparisons of four nuclear microsatellite loci and morphometrics and meristics. In analyses of both data sets, populations of M. s. splendida with eachamensis mtDNA were more similar to captive M. eachamensis than to M. s. splendida with splendida mtDNA, supporting hypothesis 3. These results are significant for the management of M. eachamensis in several respects. First the combined molecular and morphological evidence indicates that M. eachamensis is a distinct species and a discrete evolutionarily significant unit worthy of conservation effort. Second it appears that the species boundary between M. eachamensis and M. s. splendida has been misdiagnosed such that there are extant populations on the Atherton Tableland as well as areas where both forms coexist. Accordingly we suggest that M. eachamensis be listed as vulnerable, rather than critical (or extinct in the wild). Third, the discovery of extant but genetically divergent populations of M. eachamensis on the Atherton Tableland broadens the options for future reintroductions to Lake Eacham.