132 resultados para Evolutionary optimization methods
em University of Queensland eSpace - Australia
Resumo:
In this paper, numerical simulations are used in an attempt to find optimal Source profiles for high frequency radiofrequency (RF) volume coils. Biologically loaded, shielded/unshielded circular and elliptical birdcage coils operating at 170 MHz, 300 MHz and 470 MHz are modelled using the FDTD method for both 2D and 3D cases. Taking advantage of the fact that some aspects of the electromagnetic system are linear, two approaches have been proposed for the determination of the drives for individual elements in the RF resonator. The first method is an iterative optimization technique with a kernel for the evaluation of RF fields inside an imaging plane of a human head model using pre-characterized sensitivity profiles of the individual rungs of a resonator; the second method is a regularization-based technique. In the second approach, a sensitivity matrix is explicitly constructed and a regularization procedure is employed to solve the ill-posed problem. Test simulations show that both methods can improve the B-1-field homogeneity in both focused and non-focused scenarios. While the regularization-based method is more efficient, the first optimization method is more flexible as it can take into account other issues such as controlling SAR or reshaping the resonator structures. It is hoped that these schemes and their extensions will be useful for the determination of multi-element RF drives in a variety of applications.
Resumo:
This paper describes a hybrid numerical method for the design of asymmetric magnetic resonance imaging magnet systems. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. A new type of asymmetric magnet is proposed in this work. The asymmetric MRI magnet allows the diameter spherical imaging volume to be positioned close to one end of the magnet. The main advantages of making the magnet asymmetric include the potential to reduce the perception of claustrophobia for the patient, better access to the patient by attending physicians, and the potential for reduced peripheral nerve stimulation due to the gradient coil configuration. The results highlight that the method can be used to obtain an asymmetric MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1.2 m in length. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 1999 Academic Press.
Resumo:
This paper describes a hybrid numerical method of an inverse approach to the design of compact magnetic resonance imaging magnets. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first, kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. The emphasis of this work is on the optimal design of short MRI magnets. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric MRI magnets as well as asymmetric magnets. The results highlight that the method can be used to obtain a compact MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1 m in length, significantly shorter than current designs. Viable asymmetric magnet designs, in which the edge of the homogeneous region is very close to one end of the magnet system are also presented. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 2000 American Association of Physicists in Medicine. [S0094-2405(00)00303-5].
Resumo:
In this work, a new method of optimization is successfully applied to the theoretical design of compact, actively shielded, clinical MRI magnets. The problem is formulated as a two-step process in which the desired current densities on multiple, cc-axial surface layers are first calculated by solving Fredholm equations of the first kind. Non-linear optimization methods with inequality constraints are then invoked to fit practical magnet coils to the desired current densities. The current density approach allows rapid prototyping of unusual magnet designs. The emphasis of this work is on the optimal design of short, actively-shielded MRI magnets for whole-body imaging. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric, and asymmetric MRI magnets. Magnet designs are presented for actively-shielded, symmetric magnets of coil length 1.0 m, which is considerably shorter than currently available designs of comparable dsv size. Novel, actively-shielded, asymmetric magnet designs are also presented in which the beginning of a 50-cm dsv is positioned just 11 cm from the end of the coil structure, allowing much improved access to the patient and reduced patient claustrophobia. Magn Reson Med 45:331540, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
Magnetic resonance imaging (MRI) magnets have very stringent constraints on the homogeneity of the static magnetic field that they generate over desired imaging regions. The magnet system also preferably generates very little stray field external to its structure, so that ease of siting and safety are assured. This work concentrates on deriving, means of rapidly computing the effect of 'cold' and 'warm' ferromagnetic material in or around the superconducting magnet system, so as to facilitate the automated design of hybrid material MR magnets. A complete scheme for the direct calculation of the spherical harmonics of the magnetic field generated by a circular ring of ferromagnetic material is derived under the conditions of arbitrary external magnetizing fields. The magnetic field produced by the superconducting coils in the system is computed using previously developed methods. The final, hybrid algorithm is fast enough for use in large-scale optimization methods. The resultant fields from a practical example of a 4 T, clinical MRI magnet containing both superconducting coils and magnetic material are presented.
Resumo:
Numerical optimisation methods are being more commonly applied to agricultural systems models, to identify the most profitable management strategies. The available optimisation algorithms are reviewed and compared, with literature and our studies identifying evolutionary algorithms (including genetic algorithms) as superior in this regard to simulated annealing, tabu search, hill-climbing, and direct-search methods. Results of a complex beef property optimisation, using a real-value genetic algorithm, are presented. The relative contributions of the range of operational options and parameters of this method are discussed, and general recommendations listed to assist practitioners applying evolutionary algorithms to the solution of agricultural systems. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.
Resumo:
Motivation: Prediction methods for identifying binding peptides could minimize the number of peptides required to be synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatic method for the prediction of peptide binding to MHC class II molecules. Results: Experimental binding data and expert knowledge of anchor positions and binding motifs were combined with an evolutionary algorithm (EA) and an artificial neural network (ANN): binding data extraction --> peptide alignment --> ANN training and classification. This method, termed PERUN, was implemented for the prediction of peptides that bind to HLA-DR4(B1*0401). The respective positive predictive values of PERUN predictions of high-, moderate-, low- and zero-affinity binder-a were assessed as 0.8, 0.7, 0.5 and 0.8 by cross-validation, and 1.0, 0.8, 0.3 and 0.7 by experimental binding. This illustrates the synergy between experimentation and computer modeling, and its application to the identification of potential immunotheraaeutic peptides.
Resumo:
Power system small signal stability analysis aims to explore different small signal stability conditions and controls, namely: (1) exploring the power system security domains and boundaries in the space of power system parameters of interest, including load flow feasibility, saddle node and Hopf bifurcation ones; (2) finding the maximum and minimum damping conditions; and (3) determining control actions to provide and increase small signal stability. These problems are presented in this paper as different modifications of a general optimization to a minimum/maximum, depending on the initial guesses of variables and numerical methods used. In the considered problems, all the extreme points are of interest. Additionally, there are difficulties with finding the derivatives of the objective functions with respect to parameters. Numerical computations of derivatives in traditional optimization procedures are time consuming. In this paper, we propose a new black-box genetic optimization technique for comprehensive small signal stability analysis, which can effectively cope with highly nonlinear objective functions with multiple minima and maxima, and derivatives that can not be expressed analytically. The optimization result can then be used to provide such important information such as system optimal control decision making, assessment of the maximum network's transmission capacity, etc. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
We develop a test of evolutionary change that incorporates a null hypothesis of homogeneity, which encompasses time invariance in the variance and autocovariance structure of residuals from estimated econometric relationships. The test framework is based on examining whether shifts in spectral decomposition between two frames of data are significant. Rejection of the null hypothesis will point not only to weak nonstationarity but to shifts in the structure of the second-order moments of the limiting distribution of the random process. This would indicate that the second-order properties of any underlying attractor set has changed in a statistically significant way, pointing to the presence of evolutionary change. A demonstration of the test's applicability to a real-world macroeconomic problem is accomplished by applying the test to the Australian Building Society Deposits (ABSD) model.
Resumo:
Smoothing the potential energy surface for structure optimization is a general and commonly applied strategy. We propose a combination of soft-core potential energy functions and a variation of the diffusion equation method to smooth potential energy surfaces, which is applicable to complex systems such as protein structures; The performance of the method was demonstrated by comparison with simulated annealing using the refinement of the undecapeptide Cyclosporin A as a test case. Simulations were repeated many times using different initial conditions and structures since the methods are heuristic and results are only meaningful in a statistical sense.