6 resultados para Evolutionary Relationships

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tropidurid lizards have colonized a variety of Brazilian open environments without remarkable morphological variation, despite ecological and structural differences among habitats used. This study focuses on two Tropidurus sister-species that, despite systematic proximity and similar morphology, exhibit great ecological divergence and a third ecologically generalist congeneric species providing an outgroup comparison. We quantified jumping capacity and sprint speed of each species on sand and rock to test whether ecological divergence was also accompanied by differences in locomotor performance. Relevant physiological traits possibly associated with locomotor performance metabolic scopes and fiber type composition, power output and activity of the enzymes citrate synthase, pyruvate kinase and lactate dehydrogenase of the iliofibularis muscle - were also compared among the three Tropidurus species. We found that the two sister-species exhibited remarkable differences in jumping performance, while Tropidurus oreadicus, the more distantly related species, exhibited intermediate values. Tropidurus psamonastes, a species endemic to sand dunes, exhibited high absolute sprint speeds on sand, jumped rarely and possessed a high proportion of glycolytic fibers and low activity of citrate synthase. The sister-species Tropidurus itambere, endemic to rocky outcrops, performed a large number of jumps and achieved lower absolute sprint speed than T. psamonastes. This study provides evidence of rapid divergence of locomotor parameters between sister-species that use different substrates, which is only partially explained by variation in physiological parameters of the iliofibularis muscle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Three-dimensional structures have been determined for 13 different enzymes that use thiamine diphosphate (ThDP) as a cofactor. These enzymes fall into five families, where members within a family have similar structures. In different families, there are similarities between some domains that clearly point to a common ancestor for all of these enzymes. Where the enzyme structures differ, evolutionary relationships between families can be discerned. Here, I present an analysis of these families and propose an evolutionary pathway to explain the diversity of structures that are now known.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bacterial wilts of banana known as Moko disease, Bugtok disease and blood disease are caused by members of the R. solanacearum species complex. R. solanacearum is a heterogeneous species which has been divided into 4 genetic groups known as phylotypes. Within the R. solanacearum species complex, strains that cause Moko and Bugtok diseases belong to phylotype II. The blood disease bacterium, the cause of blood disease, belongs to phylotype IV. This study employs phylogenetic analysis of partial endoglucanase gene sequences to further assess the evolutionary relationships between strains of R. solanacearum causing Moko disease and Bugtok disease and the relationship of the blood disease bacterium to other R. solanacearum strains within phylotype IV of the R. solanacearum species complex. These analyses showed that R. solanacearum Moko disease-causing strains are polyphyletic, forming four related, but distinct, clusters of strains. One of these clusters is a previously unrecognised group of R. solanacearum Moko disease-causing strains. It was also found that R. solanacearum strains that cause Bugtok disease are indistinguishable from strains causing Moko disease in the Philippines. Phylogenetic analysis of partial endoglucanase gene sequences of the strains of the blood disease confirms a close relationship of these strains to R. solanacearum strains within phylotype IV of the R. solanacearum species complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Almost half of the 4822 described beeflies in the world belong to the subfamily Anthracinae, with most of the diversity found in three cosmopolitan tribes: Villini, Anthracini, and Exoprosopini. The Australian Exoprosopini previously contained three genera, Ligyra Newman, Pseudopenthes Roberts and Exoprosopa Macquart. Pseudopenthes is an Australian endemic, with two species including Ps. hesperis, sp. nov. from Western Australia. Two new species of the exoprosopine Atrichochira Hesse, Atr. commoni, sp. nov. and Atr. paramonovi, sp. nov., are also described from Australia, extending the generic distribution from Africa. Cladistic analysis clarified the phylogenetic relationships between the recognised groups of the Exoprosopini and determined generic limits on a world scale. Inclusion of 18 Australian exoprosopines placed the Australian species in the context of the world fauna. The Exoprosopini contains six large groups. The basal group I contains species previously included in Exoprosopa to which the name Defilippia Lioy is applied. Group II contains Heteralonia Rondani, Atrichochira, Micomitra Bowden, Pseudopenthes, and Diatropomma Bowden. Colossoptera Hull is newly synonymised with Heteralonia. Group III is a paraphyletic assemblage of Pterobates Bezzi and Exoprosopa including the Australian Ex. sylvana ( Fabricius). Ligyra is paraphyletic, forming two well-separated clades. The African clade is described as Euligyra Lambkin, gen. nov., which, together with Litorhina Bezzi and Hyperalonia Rondani, form group IV. The Australian group V is true Ligyra. The remaining monophyletic lineage of exoprosopines, group VI, the Balaana-group of genera, shows evidence of an evolutionary radiation of beeflies in semi-arid Australia. Phylogenetic analysis of all 42 species of the Balaana-group of genera formed a basis for delimiting genera. Seven new genera are described by Lambkin & Yeates: Balaana, Kapua, Larrpana, Munjua, Muwarna, Palirika and Wurda. Four non-Australian species belong to Balaana. Thirty two new Australian species are described: Bal. abscondita, Bal. bicuspis, Bal. centrosa, Bal. gigantea, Bal. kingcascadensis, K. corusca, K. irwini, K. westralica, Lar. collessi, Lar. zwicki, Mun. erugata, Mun. lepidokingi, Mun. paralutea, Mun. trigona, Muw. vitreilinearis, Pa. anaxios, Pa. basilikos, Pa. blackdownensis, Pa. bouchardi, Pa. cyanea, Pa. danielsi, Pa. decora, Pa. viridula, Pa. whyalla, W. emu, W. impatientis, W. montebelloensis, W. norrisi, W. patrellia, W. skevingtoni, W. windorah, and W. wyperfeldensis. The following new combinations are proposed: from Colossoptera: Heteralonia latipennis (Brunetti); from Exoprosopa: Bal. grandis (Pallas), Bal. efflatounbeyi (Paramonov), Bal. latelimbata ( Bigot), Bal. obliquebifasciata ( Macquart), Bal. tamerlan (Portschinsky), Bal. onusta ( Walker), Def. busiris (Jaennicke), Def. efflatouni ( Bezzi), Def. eritreae (Greathead), Def. gentilis ( Bezzi), Def. luteicosta ( Bezzi), Def. minos (Meigen), Def. nigrifimbriata ( Hesse), Def. rubescens ( Bezzi), K. adelaidica ( Macquart), Lar. dimidiatipennis ( Bowden), Muw. stellifera ( Walker), and Pa. marginicollis ( Gray); from Ligyra: Eu. enderleini ( Paramonov), Eu. mars ( Bezzi), Eu. monacha (Klug), Eu. paris ( Bezzi), Eu. sisyphus ( Fabricius), and Eu. venus (Karsch).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data are taken from a representative sample of the Australian population to determine the qualities that are desired in a sexual partner. These qualities are considered in three categories: those reflecting the perceived reproductive value of the partner (evolutionary imperative), the emotional attachment to a partner and the pure pleasure associated with having sex. Subjects completed a telephone-based survey 876 males; 908 females; aged 18-59). The qualities respondents report they most desire in a sexual partner are that the person is someone who cares about them, and whom they love. They also rank highly the criterion that their partner should enjoy sex, and much less highly that they themselves should enjoy the sex. Evolutionary imperatives are ranked fairly low as criteria sought in a sexual partner. Males and females generally expressed similar preferences in a sexual partner, as do persons in different age groups, and persons in different marital status categories. Heterosexual males appear to place a higher emphasis on the physical appearance of a partner when compared with non-heterosexuals. [PUBLICATION ABSTRACT]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data from diverse studies endorse ideas that short term torpor and hibernation are expressions of ancient characters. In evolutionary terms, their basic mechanisms are probably plesiomorphic (= ancestral/primitive) and physiologically similar. This contrasts with the alternate view that they are apomorphic (= derived, specialized), arising independently in many taxa from homeothermic ancestry by numerous apparent convergences. This paper explores some of the implications of accepting the plesiomorphic interpretation. Hibernation is, of course, a complex phenomenon that has undergone variations and refinements in different mammalian lineages. The argument is not that hibernation in total is a plesiomorphic character, but that it is built upon fundamental processes that are. Taking this view provides a framework for research that emphasizes the value of comparative studies, particularly of reptiles and birds. Studies of reptiles, for example, might unravel the mystery about periodic arousals. A plesiomorphic framework also explains the most extreme examples of hibernation as derived specializations from ancestry in which heterothermy is more about energy management than escape from cold. It cautions against using low body temperature (Tb) alone to diagnose torpor, emphasizes the need to distinguish between constitutional eurythermy (plesiomorphic) and constitutional stenothermy (apomorphic), and leads to a parsimonious theory about the evolution of endothermy. The paper proposes that brown adipose tissue (BAT) is apomorphic within eutheria and highlights the conundrum posed by the occurrence of both nonshivering thermogenesis (NST) and rapid arousal from hibernation in noneutherian mammals that lack BAT and uncoupling protein 1 (UCP1). It endorses the likely existence of a different, ancient and widespread mechanism for regulatory NST in mammals.