285 resultados para Ethanol biofuel cell
em University of Queensland eSpace - Australia
Resumo:
Neutrophil infiltration is a feature of alcoholic hepatitis (AH), and although the mechanism by which this occurs is unclear, it may involve a chemotactic gradient. We used lipopolysaccharide (LPS) to induce, in ethanol-fed rats, liver damage similar to that seen in AH. To our knowledge, this study is the first to examine the effect of ethanol on LPS-stimulated chemokine mRNA expression in this model. Hepatic cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1 beta, MIP-2, and eotaxin mRNA levels were elevated 1 to 3 hr post-LPS in both groups. Maximal expression of MIP-2 and MCP-1 mRNA was higher in ethanol-fed rats 1 hr post-LPS, whereas CINC-2 mRNA expression was elevated above controls at 12 to 24 hr. Hepatic intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 mRNA levels were elevated in both groups at 1 hr, whereas L-selectin expression in ethanol-fed rats was elevated above controls at 12 to 24 hr. Hepatic neutrophil infiltration was highest during maximal hepatocyte necrosis. These data suggest that cell adhesion molecules, in conjunction with elevated cytokines and the subsequently induced chemokines, may assist in the formation of a chemotactic gradient within the liver, causing the neutrophil infiltration seen both in this model and possibly in AH.
Resumo:
The purpose of this study was to determine the relationship between ornithine decarboxylase activity (ODC; a marker for perturbed cell development), the blood alcohol level, and alcohol-induced microencephaly in the developing rat brain after binge treatment with ethanol vapour. By manipulating ethanol flow we were able to adjust vapour concentrations (24-65 mg ethanol/l air) such that an acute exposure of ethanol vapour for 3 h resulted in a range of blood alcohol levels (2.3-5.5 mg/ml). Acute studies showed that ethanol dose-dependently inhibited rat hippocampal and cerebellar ODC activity at PND4-PND10. There was a significant correlation between the blood alcohol level and degree of inhibition at all ages tested. Chronic treatment from PND4 to PND9 caused a significant decrease in both brain to body weight ratio and in hippocampal and cerebellar ODC activities at PND10. These results indicate that ethanol-induced disruption in ODC could play a significant role in ethanol's teratogenic effects during early postnatal development. (C) 1998 Elsevier Science Inc.
Resumo:
Visual system abnormalities are commonly encountered in the fetal alcohol syndrome although the level of exposure at which they become manifest is uncertain. In this study we have examined the effects of either low (ETLD) or high dose (ETHD) ethanol, given between postnatal days 4-9, on the axons of the rat optic nerve. Rats were exposed to ethanol vapour in a special chamber for a period of 3 h per day during the treatment period. The blood alcohol concentration in the ETLD animals averaged similar to 171 mg/dl and in the ETHD animals similar to 430 mg/dl at the end of the treatment on any given day. Groups of 10 and 30-d-old mother-reared control (MRC), separation control (SC), ETLD and ETHD rats were anaesthetised with an intraperitoneal injection or ketamine and xylazine, and killed by intracardiac perfusion with phosphate-buffered glutaraldehyde. In the 10-d-old rat optic nerves there was a total of similar to 145000-165000 axons in MRC, SC and ETLD animals. About 4 % of these fibres were myelinated. The differences between these groups were not statistically significant. However, the 10-d-old ETHD animals had only about 75000 optic nerve axone (P < 0.05) of which about 2.8 % were myelinated. By 30 d of age there was a total of between 75000 90000 optic nerve axons, irrespective of the group examined. The proportion of axons which were myelinated at this age was still significantly lower (P < 0.001) in the ETHD animals (similar to 77 %) than in the other groups (about 98 %). It is concluded that the normal stages of development and maturation of the rat optic nerve axons, as assessed in this study, can be severely compromised by exposure to a relatively high (but not low) dose of ethanol between postnatal d 4 and 9.
Resumo:
We have previously shown that exposing rats to a relatively high dose of ethanol during early postnatal life can result in an alteration in spatial learning ability. The hippocampal formation is known to be involved in the control of this ability. The purpose of the present study was to determine whether exposure of rats to ethanol during early postnatal life had either immediate or delayed effects on the numbers of pyramidal cells in the CA1-CA3 subregion of the hippocampus. Wistar rats were exposed to a relatively high daily dose of ethanol at postnatal day 10-15 by placing them for 3 h/day in a chamber containing ethanol vapor. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anesthetized and killed at 16 and 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle was used to determine the volumes of the CA1 and CA2+CA3 regions. The physical disector method was used to estimate the numerical density of neurons in each of the subdivisions. The total number of pyramidal cells was calculated by multiplying the appropriate estimates of the numerical density by the volume. There were significant age-related reductions in the total numbers of pyramidal cells at 16-30 days of age irrespective of the groups examined. Ethanol treated rats were found to have slightly but significantly fewer pyramidal cell neurons than either the MRC or SC groups. These observations indicate that pyramidal cells in the hippocampus may be vulnerable to a relatively high dose of ethanol exposure during this short period of early postnatal life. (C) 2003 Wiley-Liss, Inc.
Resumo:
Systemic injection of kainic acid (KA) results in characteristic behaviors and programmed cell death in some regions of the rat brain. We used KA followed by recovery at 4 degrees C to restrict damage to limbic structures and compared patterns of immediate early gene (IEG) expression and associated DNA binding activity in these damaged areas with that in spared brain regions. Male Wistar rats were injected with BA (12 mg/kg, ip) and kept at 4 degrees C for 5 h. This treatment reduced the severity of behaviors and restricted damage (observed by Nissl staining) to the CA1 and CA3 regions of the hippocampus and an area including the entorhinal cortex. DNA laddering, characteristic of apoptosis, was first evident in the hippocampus and the entorhinal cortex 18 and 22 h after RA, respectively. The pattern of IEG mRNA induction fell into three classes: IEGs that were induced in both damaged and spared areas (c-fos, fos B, jun B, and egr-1), IEGs that were induced specifically in the damaged areas (fra-2 and c-jun), and an IEG that was significantly induced by saline injection and/or the cold treatment (jun D). The pattern of immunoreactivity closely followed that of mRNA expression. Binding to the AP-1 and EGR DNA consensus sequences increased in all three regions studied. This study describes a unique modification of the animal model of ICA-induced neurotoxicity which may prove a useful tool for dissecting the molecular cascade that ultimately results in programmed cell death. (C) 1997 Academic Press.
Resumo:
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Izuru Matusmoto and Peter A. Wilce. The presentations were (1) GABA receptor subunit expression in the human alcoholic brain, by Tracey Buckley and Peter Dodd; (2) NMDAR gene expression during ethanol addiction, by Jorg Puzke, Rainer Spanagel, Walther Zieglgansberger, and Gerald Wolf; (3) Differentially expressed gene in the nucleus accumbens from ethanol-administered rat, by Shuangying Leng; (4) Expression of a novel gene in the alcoholic brain, by Peter A. Wilce; and (5) Investigations of haplotypes of the dopamine Da-receptor gene in alcoholics, by Hans Rommelspacher, Ulrich Finckh, and Lutz G. Schmidt.
Resumo:
Adaptive changes that occur after chronic exposure to ethanol are an important component in the development of physical dependence. We have focused our research on ethanol-induced changes in the expression of several genes that may be important in adaptation. In this article, we describe adaptive changes at the level of the N-methyl-D-aspartate receptor, in the protein expression and activity of the Egr transcription factors, and in the expression of a novel gene of unknown function. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Fetal alcohol syndrome (FAS) is the leading cause of mental retardation in western society. We investigated possible changes in glutamate receptor levels in neonatal animals following ethanol exposure using radioligand binding and western blot analysis. We used a vapor chamber to administer ethanol to neonatal Wistar rats 3 h a day from postnatal day (PND) 4-9. A separation control group was separated from their mothers for the same time and duration as the vapor treatment, while a normal control group was left to develop normally. Daily ethanol administrations resulted in decreased brain weight and body weight, as well as microencephaly (decreased brain:body weight ratio). Neither the affinity nor maximum binding of [H-3]MK-801 (dizoclipine maleate) in the cortex of PND10 rats differed between treatment groups. Western blot analysis also failed to reveal any changes in NMDAR1, NMDAR2A, or NMDAR2B receptor levels. In contrast, the AMPA receptor subunit GluR1 was greatly reduced in vapor-treated pups compared with control pups, as revealed by western blot analysis. A similar reduction was found in westerns with an antibody recognizing the GluR2 and 4 subunits. These results indicate that ethanol reduces AMPA rather than NMDA receptors in the developing neocortex, possibly by blocking NMDA receptors during development. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This article represents the proceedings of a symposium at the 2002 joint RSA/ISBRA Conference in San Francisco, California. The organizer was Paula L. Hoffman and the co-chairs were Paula L. Hoffman and Michael Miles. The presentations were (1) Introduction and overview of the use of DNA microarrays, by Michael Miles; (2) DNA microarray analysis of gene expression in brains of P and NP rats, by Howard J. Edenberg; (3) Gene expression patterns in brain regions of AA and ANA rats, by Wolfgang Sommer; (4) Patterns of gene expression in brains of selected lines of mice that differ in ethanol tolerance, by Boris Tabakoff; (5) Gene expression profiling related to initial sensitivity and tolerance in gamma-protein kinase C mutants, by Jeanne Wehner; and (6) Gene expression patterns in human alcoholic brain: from microarrays to protein profiles, by Joanne Lewohl.
Resumo:
Aims: Previous immunohistochemical studies have shown that the post-translational formation of aldehyde-protein adducts may be an important process in the aetiology of alcohol-induced muscle disease. However, other studies have shown that in a variety of tissues, alcohol induces the formation of various other adduct species, including hybrid acetaldehyde-malondialdehyde-protein adducts and adducts with free radicals themselves, e.g. hydroxyethyl radical (HER)-protein adducts. Furthermore, acetaldehyde-protein adducts may be formed in reducing or non-reducing environments resulting in distinct molecular entities, each with unique features of stability and immunogenicity. Some in vitro studies have also suggested that unreduced adducts may be converted to reduced adducts in situ. Our objective was to test the hypothesis that in muscle a variety of different adduct species are formed after acute alcohol exposure and that unreduced adducts predominate. Methods: Rabbit polyclonal antibodies were raised against unreduced and reduced aldehydes and the HER-protein adducts. These were used to assay different adduct species in soleus (type I fibre-predominant) and plantaris (type II fibre-predominant) muscles and liver in four groups of rats administered acutely with either [A] saline (control); [B] cyanamide (an aldehyde dehydrogenase inhibitor); [C] ethanol; [D] cyanamide+ethanol. Results: Amounts of unreduced acetaldehyde and malondialdehyde adducts were increased in both muscles of alcohol-dosed rats. However there was no increase in the amounts of reduced acetaldehyde adducts, as detected by both the rabbit polyclonal antibody and the RT1.1 mouse monoclonal antibody. Furthermore, there was no detectable increase in malondialdehyde-acetaldehyde and HER-protein adducts. Similar results were obtained in the liver. Conclusions: Adducts formed in skeletal muscle and liver of rats exposed acutely to ethanol are mainly unreduced acetaldehyde and malondialdehyde species.