9 resultados para Ethanol
em University of Queensland eSpace - Australia
Resumo:
The effect of region of application on the percutaneous penetration of solutes with differing lipophilicity was investigated in canine skin. Skin from the thorax, neck, back, groin, and axilla regions was harvested from Greyhound dogs and placed in Franz-type diffusion cells. Radiolabelled (C-14) ethanol (Log P 0.19) or hexanol (Log P 1.94) was applied to each skin section for a total of 5 h. The permeability coefficient (k(P), cm h(-1)) and residue of alcohol remaining in the skin were significantly (P = 0.001) higher for hexanol compared to ethanol. In contrast, ethanol had a far greater maximum flux (J(max), mol (cm(2))(-1) h(-1)) than hexanol (P = 0.001). A comparison of regional differences shows the k(P) and Jmax for ethanol in the groin was significantly lower (P = 0.035) than the back. The k(P) and Jmax for hexanol were significantly higher (P = 0.001) in the axilla than the other four skin sites. An understanding of factors influencing percutaneous drug movement is important when formulating topical preparations for the dog. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Aims: Previous immunohistochemical studies have shown that the post-translational formation of aldehyde-protein adducts may be an important process in the aetiology of alcohol-induced muscle disease. However, other studies have shown that in a variety of tissues, alcohol induces the formation of various other adduct species, including hybrid acetaldehyde-malondialdehyde-protein adducts and adducts with free radicals themselves, e.g. hydroxyethyl radical (HER)-protein adducts. Furthermore, acetaldehyde-protein adducts may be formed in reducing or non-reducing environments resulting in distinct molecular entities, each with unique features of stability and immunogenicity. Some in vitro studies have also suggested that unreduced adducts may be converted to reduced adducts in situ. Our objective was to test the hypothesis that in muscle a variety of different adduct species are formed after acute alcohol exposure and that unreduced adducts predominate. Methods: Rabbit polyclonal antibodies were raised against unreduced and reduced aldehydes and the HER-protein adducts. These were used to assay different adduct species in soleus (type I fibre-predominant) and plantaris (type II fibre-predominant) muscles and liver in four groups of rats administered acutely with either [A] saline (control); [B] cyanamide (an aldehyde dehydrogenase inhibitor); [C] ethanol; [D] cyanamide+ethanol. Results: Amounts of unreduced acetaldehyde and malondialdehyde adducts were increased in both muscles of alcohol-dosed rats. However there was no increase in the amounts of reduced acetaldehyde adducts, as detected by both the rabbit polyclonal antibody and the RT1.1 mouse monoclonal antibody. Furthermore, there was no detectable increase in malondialdehyde-acetaldehyde and HER-protein adducts. Similar results were obtained in the liver. Conclusions: Adducts formed in skeletal muscle and liver of rats exposed acutely to ethanol are mainly unreduced acetaldehyde and malondialdehyde species.
Resumo:
We measured the effects of ethanol on glutamate receptor levels in the hippocampus of neonatal Wistar rats using a vapor chamber model. Two control groups were used; a normal suckle group and a maternal separation group. Levels of NMDA receptors were not significantly altered in ethanol-treated animals compared to the normal suckle control group, as shown by [H-3]MK-801 binding and Western blot analysis. However, MK-801 binding and NR1 subunit immunoreactivity were greatly reduced in the hippocampus of separation control animals. Neither ethanol treatment nor maternal separation altered levels of GluR1 or GluR2(4). These results have serious implications for the importance of maternal contact for normal brain development.
Resumo:
GCMC simulations are applied to the adsorption of sub-critical methanol and ethanol on graphitized carbon black at 300 K. The carbon black was modelled both with and without carbonyl functional groups. Large differences are seen between the amounts adsorbed for different carbonyl configurations at low pressure prior to monolayer coverage. Once a monolayer has been formed on the carbon black, the adsorption behaviour is similar between the model surfaces with and without functional groups. Simulation isotherms for the case of low carbonyl concentrations or no carbonyls are qualitatively similar to the few experimental isotherms available in the literature for methanol and ethanol adsorption on highly graphitized carbon black. Isosteric heats and adsorbed phase heat capacities are shown to be very sensitive to carbonyl configurations. A maximum is observed in the adsorbed phase heat capacity of the alcohols for all simulations but is unrealistically high for the case of a plain graphite surface. The addition of carbonyls to the surface greatly reduces this maximum and approaches experimental data with carbonyl concentration as low as 0.09 carbonyls/nm(2).
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors involved in various metabolic diseases. In the liver, PPARα is involved in alcohol metabolism and may lead to the development of alcoholic fatty liver and other alcohol mediated liver injuries. PPARβ modulation by ethanol induces abnormal myelin production by oligodendrocytes. PPARα and PPARβ are PPAR isoforms expressed in the human breast cell lines. Epidemiological studies show a positive correlation between alcohol intake and breast cancer risk, however, the molecular mechanisms involved are unclear. We hypothesized that ethanol would affect the expression and transactivation of human PPAR isoforms in estrogen receptor (ER) positive and ER negative breast cancer cells. Using real time RT-PCR we looked at the transcription of PPAR isoforms in the presence of increasing concentrations of ethanol and saw isoform and time dependent specific effects. Gene reporter assays enabled us to ascertain the effects of ethanol on ligand-mediated activation of human PPARα and PPARβ at concentrations equivalent to both moderate and chronic alcohol consumption. Ethanol differentially blocked the ligand-mediated activation of both PPARα and PPARβ. Since PPARα and PPARβ are involved in the differentiation and proliferation of breast cancer cells, PPARs may be a possible mechanism involved in the effect of ethanol in breast cancer.