4 resultados para Estuarine animals

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coarse-resolution thematic maps derived from remotely sensed data and implemented in GIS play an important role in coastal and marine conservation, research and management. Here, we describe an approach for fine-resolution mapping of land-cover types using aerial photography and ancillary GIs and ground data in a large (100 x 35 km) subtropical estuarine system (Moreton Bay, Queensland, Australia). We have developed and implemented a classification scheme representing 24 coastal (subtidal, intertidal. mangrove, supratidal and terrestrial) cover types relevant to the ecology of estuarine animals, nekton and shorebirds. The accuracy of classifications of the intertidal and subtidal cover types, as indicated by the agreement between the mapped (predicted) and reference (ground) data, was 77-88%, depending on the zone and level of generalization required. The variability and spatial distribution of habitat mosaics (landscape types) across the mapped environment were assessed using K-means clustering and validated with Classification and Regression Tree models. Seven broad landscape types could be distinguished and ways of incorporating the information on landscape composition into site-specific conservation and field research are discussed. This research illustrates the importance and potential applications of fine-resolution mapping for conservation and management of estuarine habitats and their terrestrial and aquatic wildlife. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compared the stress induced in captive estuarine crocodiles, Crocodylus porosus, by two different handling methods: manual restraint (noosing with ropes) and immobilization by electro-stunning. To stun, a short charge (approx. 6 s) at 110 V was delivered to the back of the necks of C. porosus using a custom-built device, which immobilized the animals for 5-10 min. Immobilized and restrained animals were measured and sexed, and the condition of the skin assessed. Blood samples were taken from some animals immediately after restraint or immobilization. Other animals were returned to their pens to recover for periods of 30 min, 1, 4, 12, 24 or 48 hours after which they were stunned and blood samples taken. Individual animals (mean body length 1.96 m, N=99) were bled only once. Haematocrit and haemoglobin concentrations were measured and plasma samples were analysed for corticosterone, glucose and lactate levels. Following restraint, there were significant increases in haematocrit, haemoglobin, glucose, lactate and corticosterone concentrations in C. porosus. For restrained animals, recovery to baseline levels occurred after approximately 8 hours. The stress response of stunned animals was significantly reduced compared to manually captured and restrained crocodiles. Both groups showed a significant increase in haematocrit, haemoglobin concentration and lactate levels, however the magnitude of change was significantly reduced, and recovery was faster in stunned animals. No increase in either glucose or corticosterone levels occurred with immobilisation. The results imply that immobilization by electro-stunning is much less stressful. (C) 2003 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many marine reptiles and birds possess extrarenal salt glands that facilitate the excretion of excess sodium and chloride ions accumulated as a consequence of living in saline environments. Control of the secretory activity of avian salt glands is under neural control, but little information is available on the control of reptilian salt glands. Innervation of the lingual salt glands of the salt water crocodile, Crocodylus porosus, was examined in salt water-acclimated animals using histological methods. Extensive networks of both cholinergic and adrenergic nerve fibres were identified close to salt-secreting lobules and vasculature. The identification of both catecholamine-containing and cholinergic neurons in the salt gland epithelium and close to major blood vessels in the tissue suggests the action of the neurotransmitters on the salt-secreting epithelium itself and the rich vascular network of the lingual salt glands.