14 resultados para Estimation Methods
em University of Queensland eSpace - Australia
Resumo:
In wildlife management, the program of monitoring will depend on the management objective. If the objective is damage mitigation, then ideally it is damage that should be monitored. Alternatively, population size (N) can be used as a surrogate for damage, but the relationship between N and damage obviously needs to be known. If the management objective is a sustainable harvest, then the system of monitoring will depend on the harvesting strategy. In general, the harvest strategy in all states has been to offer a quota that is a constant proportion of population size. This strategy has a number of advantages over alternative strategies, including a low risk of over- or underharvest in a stochastic environment, simplicity, robustness to bias in population estimates and allowing harvest policy to be proactive rather than reactive. However, the strategy requires an estimate of absolute population size that needs to be made regularly for a fluctuating population. Trends in population size and in various harvest statistics, while of interest, are secondary. This explains the large research effort in further developing accurate estimation methods for kangaroo populations. Direct monitoring on a large scale is costly. Aerial surveys are conducted annually at best, and precision of population estimates declines with the area over which estimates are made. Management at a fine scale (temporal or spatial) therefore requires other monitoring tools. Indirect monitoring through harvest statistics and habitat models, that include rainfall or a greenness index from satellite imagery, may prove useful.
Resumo:
The paper presents a framework for small area population estimation that enables users to select a method that is fit for the purpose. The adjustments to input data that are needed before use are outlined, with emphasis on developing consistent time series of inputs. We show how geographical harmonization of small areas, which is crucial to comparisons over time, can be achieved. For two study regions, the East of England and Yorkshire and the Humber, the differences in output and consequences of adopting different methods are illustrated. The paper concludes with a discussion of how data, on stream since 1998, might be included in future small area estimates.
Resumo:
The olive ridley is the most abundant seaturtle species in the world but little is known of the demography of this species. We used skeletochronological data on humerus diameter growth changes to estimate the age of North Pacific olive ridley seaturtles caught incidentally by pelagic longline fisheries operating near Hawaii and from dead turtles washed ashore on the main Hawaiian Islands. Two age estimation methods [ranking, correction factor (CF)] were used and yielded age estimates ranging from 5 to 38 and 7 to 24 years, respectively. Rank age-estimates are highly correlated (r = 0.93) with straight carapace length (SCL), CF age estimates are not (r = 0.62). We consider the CF age-estimates as biologically more plausible because of the disassociation of age and size. Using the CF age-estimates, we then estimate the median age at sexual maturity to be around 13 years old (mean carapace size c. 60 cm SCL) and found that somatic growth was negligible by 15 years of age. The expected age-specific growth rate function derived using numerical differentiation suggests at least one juvenile growth spurt at about 10–12 years of age when maximum age-specific growth rates, c. 5 cm SCL year−1, are apparent.
Resumo:
Genetic assignment methods use genotype likelihoods to draw inference about where individuals were or were not born, potentially allowing direct, real-time estimates of dispersal. We used simulated data sets to test the power and accuracy of Monte Carlo resampling methods in generating statistical thresholds for identifying F-0 immigrants in populations with ongoing gene flow, and hence for providing direct, real-time estimates of migration rates. The identification of accurate critical values required that resampling methods preserved the linkage disequilibrium deriving from recent generations of immigrants and reflected the sampling variance present in the data set being analysed. A novel Monte Carlo resampling method taking into account these aspects was proposed and its efficiency was evaluated. Power and error were relatively insensitive to the frequency assumed for missing alleles. Power to identify F-0 immigrants was improved by using large sample size (up to about 50 individuals) and by sampling all populations from which migrants may have originated. A combination of plotting genotype likelihoods and calculating mean genotype likelihood ratios (D-LR) appeared to be an effective way to predict whether F-0 immigrants could be identified for a particular pair of populations using a given set of markers.
Resumo:
Background: Sentinel node biopsy (SNB) is being increasingly used but its place outside randomized trials has not yet been established. Methods: The first 114 sentinel node (SN) biopsies performed for breast cancer at the Princess Alexandra Hospital from March 1999 to June 2001 are presented. In 111 cases axillary dissection was also performed, allowing the accuracy of the technique to be assessed. A standard combination of preoperative lymphoscintigraphy, intraoperative gamma probe and injection of blue dye was used in most cases. Results are discussed in relation to the risk and potential consequences of understaging. Results: Where both probe and dye were used, the SN was identified in 90% of patients. A significant number of patients were treated in two stages and the technique was no less effective in patients who had SNB performed at a second operation after the primary tumour had already been removed. The interval from radioisotope injection to operation was very wide (between 2 and 22 h) and did not affect the outcome. Nodal metastases were present in 42 patients in whom an SN was found, and in 40 of these the SN was positive, giving a false negative rate of 4.8% (2/42), with the overall percentage of patients understaged being 2%. For this particular group as a whole, the increased risk of death due to systemic therapy being withheld as a consequence of understaging (if SNB alone had been employed) is estimated at less than 1/500. The risk for individuals will vary depending on other features of the particular primary tumour. Conclusion: For patients who elect to have the axilla staged using SNB alone, the risk and consequences of understaging need to be discussed. These risks can be estimated by allowing for the specific surgeon's false negative rate for the technique, and considering the likelihood of nodal metastases for a given tumour. There appears to be no disadvantage with performing SNB at a second operation after the primary tumour has already been removed. Clearly, for a large number of patients, SNB alone will be safe, but ideally participation in randomized trials should continue to be encouraged.
Resumo:
This paper presents a metafrontier production function model for firms in different groups having different technologies. The metafrontier model enables the calculation of comparable technical efficiencies for firms operating under different technologies. The model also enables the technology gaps to be estimated for firms under different technologies relative to the potential technology available to the industry as a whole. The metafrontier model is applied in the analysis of panel data on garment firms in five different regions of Indonesia, assuming that the regional stochastic frontier production function models have technical inefficiency effects with the time-varying structure proposed by Battese and Coelli ( 1992).
Resumo:
In this paper we investigate a Bayesian procedure for the estimation of a flexible generalised distribution, notably the MacGillivray adaptation of the g-and-κ distribution. This distribution, described through its inverse cdf or quantile function, generalises the standard normal through extra parameters which together describe skewness and kurtosis. The standard quantile-based methods for estimating the parameters of generalised distributions are often arbitrary and do not rely on computation of the likelihood. MCMC, however, provides a simulation-based alternative for obtaining the maximum likelihood estimates of parameters of these distributions or for deriving posterior estimates of the parameters through a Bayesian framework. In this paper we adopt the latter approach, The proposed methodology is illustrated through an application in which the parameter of interest is slightly skewed.
Resumo:
Background There are substantial social inequalities in adult male mortality in many countries. Smoking is often more prevalent among men of lower social class, education, or income. The contribution of smoking to these social inequalities in mortality remains uncertain. Methods The contribution of smoking to adult mortality in a population can be estimated indirectly from disease-specific death rates in that population (using absolute lung cancer rates to indicate proportions due to smoking of mortality from certain other diseases). We applied these methods to 1996 death rates at ages 35-69 years in men in three different social strata in four countries, based on a total of 0.6 million deaths. The highest and lowest social strata were based on social class (professional vs unskilled manual) in England and Wales, neighbourhood income (top vs bottom quintile) in urban Canada, and completed years of education (more than vs less than 12 years) in the USA and Poland. Results In each country, there was about a two-fold difference between the highest and the lowest social strata in overall risks of dying among men aged 35-69 years (England and Wales 21% vs 43%, USA 20% vs 37%, Canada 21% vs 34%, Poland 26% vs 50%: four-country mean 22% vs 41%, four-country mean absolute difference 19%). More than half of this difference in mortality between the top and bottom social strata involved differences in risks of being killed at age 35-69 years by smoking (England and Wales 4% vs 19%, USA 4% vs 15%, Canada 6% vs 13%, Poland 5% vs 22%: four-country mean 5% vs 17%, four-country mean absolute difference 12%). Smoking-attributed mortality accounted for nearly half of total male mortality in the lowest social stratum of each country. Conclusion In these populations, most, but not all, of the substantial social inequalities in adult male mortality during the 1990s were due to the effects of smoking. Widespread cessation of smoking could eventually halve the absolute differences between these social strata in the risk of premature death.
Resumo:
Background Nurses play a key role in the prevention of cardiovascular disease (CVD) and one would, therefore, expect them to have a heightened awareness of the need for systematic screening and their own CVD risk profile. The aim of this study was to examine personal awareness of CVD risk among a cohort of cardiovascular nurses attending a European conference. Methods Of the 340 delegates attending the 5th annual Spring Meeting on Cardiovascular Nursing (Basel, Switzerland, 2005), 287 (83%) completed a self-report questionnaire to assess their own risk factors for CVD. Delegates were also asked to give an estimation of their absolute total risk of experiencing a fatal CVD event in the next 10 years. Level of agreement between self-reported CVD risk estimation and their actual risk according to the SCORE risk assessment system was compared by calculating weighted Kappa (κw). Results Overall, 109 responders (38%) self-reported having either pre-existing CVD (only 2%), one or more markedly raised CVD risk factors, a high total risk of fatal CVD (≥ 5% in 10 years) or a strong family history of CVD. About half of this cohort (53%) did not know their own total cholesterol level. Less than half (45%) reported having a 10-year risk of fatal CVD of < 1%, while 13% reported having a risk ≥ 5%. Based on the SCORE risk function, the estimated 10-year risk of a fatal CVD event was < 1% for 96% of responders: only 2% had a ≥ 5% risk of such an event. Overall, less than half (46%) of this cohort's self-reported CVD risk corresponded with that calculated using the SCORE risk function (κw = 0.27). Conclusion Most cardiovascular nurses attending a European conference in 2005 poorly understood their own CVD risk profile, and the agreement between their self-reported 10-year risk of a fatal CVD and their CVD risk using SCORE was only fair. Given the specialist nature of this conference, our findings clearly demonstrate a need to improve overall nursing awareness of the role and importance of systematic CVD risk assessment.
Resumo:
We describe methods for estimating the parameters of Markovian population processes in continuous time, thus increasing their utility in modelling real biological systems. A general approach, applicable to any finite-state continuous-time Markovian model, is presented, and this is specialised to a computationally more efficient method applicable to a class of models called density-dependent Markov population processes. We illustrate the versatility of both approaches by estimating the parameters of the stochastic SIS logistic model from simulated data. This model is also fitted to data from a population of Bay checkerspot butterfly (Euphydryas editha bayensis), allowing us to assess the viability of this population. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
All muscle contractions are dependent on the functioning of motor units. In diseases such as amyotrophic lateral sclerosis (ALS), progressive loss of motor units leads to gradual paralysis. A major difficulty in the search for a treatment for these diseases has been the lack of a reliable measure of disease progression. One possible measure would be an estimate of the number of surviving motor units. Despite over 30 years of motor unit number estimation (MUNE), all proposed methods have been met with practical and theoretical objections. Our aim is to develop a method of MUNE that overcomes these objections. We record the compound muscle action potential (CMAP) from a selected muscle in response to a graded electrical stimulation applied to the nerve. As the stimulus increases, the threshold of each motor unit is exceeded, and the size of the CMAP increases until a maximum response is obtained. However, the threshold potential required to excite an axon is not a precise value but fluctuates over a small range leading to probabilistic activation of motor units in response to a given stimulus. When the threshold ranges of motor units overlap, there may be alternation where the number of motor units that fire in response to the stimulus is variable. This means that increments in the value of the CMAP correspond to the firing of different combinations of motor units. At a fixed stimulus, variability in the CMAP, measured as variance, can be used to conduct MUNE using the "statistical" or the "Poisson" method. However, this method relies on the assumptions that the numbers of motor units that are firing probabilistically have the Poisson distribution and that all single motor unit action potentials (MUAP) have a fixed and identical size. These assumptions are not necessarily correct. We propose to develop a Bayesian statistical methodology to analyze electrophysiological data to provide an estimate of motor unit numbers. Our method of MUNE incorporates the variability of the threshold, the variability between and within single MUAPs, and baseline variability. Our model not only gives the most probable number of motor units but also provides information about both the population of units and individual units. We use Markov chain Monte Carlo to obtain information about the characteristics of individual motor units and about the population of motor units and the Bayesian information criterion for MUNE. We test our method of MUNE on three subjects. Our method provides a reproducible estimate for a patient with stable but severe ALS. In a serial study, we demonstrate a decline in the number of motor unit numbers with a patient with rapidly advancing disease. Finally, with our last patient, we show that our method has the capacity to estimate a larger number of motor units.
Resumo:
We have developed an alignment-free method that calculates phylogenetic distances using a maximum-likelihood approach for a model of sequence change on patterns that are discovered in unaligned sequences. To evaluate the phylogenetic accuracy of our method, and to conduct a comprehensive comparison of existing alignment-free methods (freely available as Python package decaf+py at http://www.bioinformatics.org.au), we have created a data set of reference trees covering a wide range of phylogenetic distances. Amino acid sequences were evolved along the trees and input to the tested methods; from their calculated distances we infered trees whose topologies we compared to the reference trees. We find our pattern-based method statistically superior to all other tested alignment-free methods. We also demonstrate the general advantage of alignment-free methods over an approach based on automated alignments when sequences violate the assumption of collinearity. Similarly, we compare methods on empirical data from an existing alignment benchmark set that we used to derive reference distances and trees. Our pattern-based approach yields distances that show a linear relationship to reference distances over a substantially longer range than other alignment-free methods. The pattern-based approach outperforms alignment-free methods and its phylogenetic accuracy is statistically indistinguishable from alignment-based distances.