5 resultados para Estimating Site Occupancy
em University of Queensland eSpace - Australia
Resumo:
Demonstrating the existence of trends in monitoring data is of increasing practical importance to conservation managers wishing to preserve threatened species or reduce the impact of pest species. However, the ability to do so can be compromised if the species in question has low detectability and the true occupancy level or abundance of the species is thus obscured. Zero-inflated models that explicitly model detectability improve the ability to make sound ecological inference in such situations. In this paper we apply an occupancy model including detectability to data from the initial stages of a fox-monitoring program on the Eyre Peninsula, South Australia. We find that detectability is extremely low (< 18%) and varies according to season and the presence or absence of roadside vegetation. We show that simple methods of using monitoring data to inform management, such as plotting the raw data or performing logistic regression, fail to accurately diagnose either the status of the fox population or its trajectory over time. We use the results of the detectability model to consider how future monitoring could be redesigned to achieve efficiency gains. A wide range of monitoring programs could benefit from similar analyses, as part of an active adaptive approach to improving monitoring and management.
Resumo:
The ability of two-dimensional gel electrophoresis (2-DE) to separate glycoproteins was exploited to separate distinct glycoforms of kappa-casein that differed only in the number of O-glycans that were attached. To determine where the glycans were attached, the individual glycoforms were digested in-gel with pepsin and the released glycopeptides were identified from characteristic sugar ions in the tandem mass spectrometry (MS) spectra. The O-glycosylation sites were identified by tandem MS after replacement of the glycans with ammonia/aminoethanethiol. The results showed that glycans were not randomly distributed among the five potential glycosylation sites in kappa-casein. Rather, glycosylation of the monoglycoform could only be detected at a single site, T-152. Similarly the diglycoform appeared to be modified exclusively at T-152 and T-163, while the triglycoform was modified at T-152, T-163 and T-154. While low levels of glycosylation at other sites cannot be excluded the hierarchy of site occupation between glycoforms was clearly evident and argues for an ordered addition of glycans to the protein. Since all five potential O-glycosylation sites can be glycosylated in vivo, it would appear that certain sites remain latent until other sites are occupied. The determination of glycosylation site occupancy in individual glycoforms separated by 2-DE revealed a distinct pattern of in vivo glycosylation that has not been recognized previously.
Resumo:
The role of mutualisms in contributing to species invasions is rarely considered, inhibiting effective risk analysis and management options. Potential ecological consequences of invasion of non-native pollinators include increased pollination and seed set of invasive plants, with subsequent impacts on population growth rates and rates of spread. We outline a quantitative approach for evaluating the impact of a proposed introduction of an invasive pollinator on existing weed population dynamics and demonstrate the use of this approach on a relatively data-rich case study: the impacts on Cytisus scoparius (Scotch broom) from proposed introduction of Bombus terrestris. Three models have been used to assess population growth (matrix model), spread speed (integrodifference equation), and equilibrium occupancy (lattice model) for C. scoparius. We use available demographic data for an Australian population to parameterize two of these models. Increased seed set due to more efficient pollination resulted in a higher population growth rate in the density-independent matrix model, whereas simulations of enhanced pollination scenarios had a negligible effect on equilibrium weed occupancy in the lattice model. This is attributed to strong microsite limitation of recruitment in invasive C. scoparius populations observed in Australia and incorporated in the lattice model. A lack of information regarding secondary ant dispersal of C. scoparius prevents us from parameterizing the integrodifference equation model for Australia, but studies of invasive populations in California suggest that spread speed will also increase with higher seed set. For microsite-limited C. scoparius populations, increased seed set has minimal effects on equilibrium site occupancy. However, for density-independent rapidly invading populations, increased seed set is likely to lead to higher growth rates and spread speeds. The impacts of introduced pollinators on native flora and fauna and the potential for promoting range expansion in pollinator-limited 'sleeper weeds' also remain substantial risks.
Resumo:
The use of presence/absence data in wildlife management and biological surveys is widespread. There is a growing interest in quantifying the sources of error associated with these data. We show that false-negative errors (failure to record a species when in fact it is present) can have a significant impact on statistical estimation of habitat models using simulated data. Then we introduce an extension of logistic modeling, the zero-inflated binomial (ZIB) model that permits the estimation of the rate of false-negative errors and the correction of estimates of the probability of occurrence for false-negative errors by using repeated. visits to the same site. Our simulations show that even relatively low rates of false negatives bias statistical estimates of habitat effects. The method with three repeated visits eliminates the bias, but estimates are relatively imprecise. Six repeated visits improve precision of estimates to levels comparable to that achieved with conventional statistics in the absence of false-negative errors In general, when error rates are less than or equal to50% greater efficiency is gained by adding more sites, whereas when error rates are >50% it is better to increase the number of repeated visits. We highlight the flexibility of the method with three case studies, clearly demonstrating the effect of false-negative errors for a range of commonly used survey methods.
Resumo:
Effective detection of population trend is crucial for managing threatened species. Little theory exists, however, to assist managers in choosing the most cost-effective monitoring techniques for diagnosing trend. We present a framework for determining the optimal monitoring strategy by simulating a manager collecting data on a declining species, the Chestnut-rumped Hylacola (Hylacola pyrrhopygia parkeri), to determine whether the species should be listed under the IUCN (World Conservation Union) Red List. We compared the efficiencies of two strategies for detecting trend, abundance, and presence-absence surveys, underfinancial constraints. One might expect the abundance surveys to be superior under all circumstances because more information is collected at each site. Nevertheless, the presence-absence data can be collected at more sites because the surveyor is not obliged to spend a fixed amount of time at each site. The optimal strategy for monitoring was very dependent on the budget available. Under some circumstances, presence-absence surveys outperformed abundance surveys for diagnosing the IUCN Red List categories cost-effectively. Abundance surveys were best if the species was expected to be recorded more than 16 times/year; otherwise, presence-absence surveys were best. The relationship between the strategies we investigated is likely to be relevant for many comparisons of presence-absence or abundance data. Managers of any cryptic or low-density species who hope to maximize their success of estimating trend should find an application for our results.