26 resultados para Equilibrium
em University of Queensland eSpace - Australia
Resumo:
This study proposes gaining a new understanding of group development by considering the integrative and the punctuated equilibrium models of group development as complementary rather than competing. We hypothesized that we would observe both punctuated equilibrium and linear progression in content-analyzed data from 25 simulated project teams, albeit on different dimensions. We predicted changes in time awareness and in task and pacing activity in line with the punctuated equilibrium model and changes in structure and process on task and socioemotional dimensions in line with the integrative model. Results partially supported predictions for both models.
Resumo:
Phase-equilibrium data and liquidus isotherms for the system MnO-CaO-(Al2O3 + SiO2) at silicomanganese alloy saturation have been determined in the temperature range of 1373 to 1723 K. The results are presented in the form of the pseudoternary sections MnO-CaO-(Al2O3 + SiO2) with Al2O3/SiO2 weight ratios of 0.55 and 0.65. The primary-phase fields have been identified in this range of conditions.
Resumo:
Experimental laboratory methods have been developed that enable phase-equilibria studies to be carried out on slags in the system Ca-Cu-Fe-O in equilibrium with metallic copper. These techniques involve equilibration at temperature, rapid quenching, and chemical analysis of the phases using electron-probe X-ray microanalysis (EPNIA). Equilibration experiments have been carried out in the temperature range of 1150 degreesC to 1250 degreesC (1423 to 1523 K) and in the composition range of 4 to 80 wt pct "Cu2O," 0 to 25 wt pct CaO, and 20 to 75 wt pct "Fe2O3" in equilibrium with metallic copper. Liquidus and solidus data are reported for the primary-phase fields of spinel (magnetite) and dicalcium ferrite. The resulting data have been used to construct liquidus isotherms of the CaO-"Cu2O"-"Fe2O3" system at metallic copper saturation.
Resumo:
For a parameter, we consider the modified relaxed energy of the liquid crystal system. Each minimizer of the modified relaxed energy is a weak solution to the liquid crystal equilibrium system. We prove the partial regularity of minimizers of the modified relaxed energy. We also prove the existence of infinitely many weak solutions for the special boundary value x.
Resumo:
Two aspects of hydrogen-air non-equilibrium chemistry related to scramjets are nozzle freezing and a process called 'kinetic afterburning' which involves continuation of combustion after expansion in the nozzle. These effects were investigated numerically and experimentally with a model scramjet combustion chamber and thrust nozzle combination. The overall model length was 0.5m, while precombustion Mach numbers of 3.1 +/- 0.3 and precombustion temperatures ranging from 740K to 1,400K were involved. Nozzle freezing was investigated at precombustion pressures of 190kPa and higher, and it was found that the nozzle thrusts were within 6% of values obtained from finite rate numerical calculations, which were within 7% of equilibrium calculations. When precombustion pressures of 70kPa or less were used, kinetic afterburning was found to be partly responsible for thrust production, in both the numerical calculations and the experiments. Kinetic afterburning offers a means of extending the operating Mach number range of a fixed geometry scramjet.
Resumo:
In this paper, we present the results of the prediction of the high-pressure adsorption equilibrium of supercritical. gases (Ar, N-2, CH4, and CO2) on various activated carbons (BPL, PCB, and Norit R1 extra) at various temperatures using a density-functional-theory-based finite wall thickness (FWT) model. Pore size distribution results of the carbons are taken from our recent previous work 1,2 using this approach for characterization. To validate the model, isotherms calculated from the density functional theory (DFT) approach are comprehensively verified against those determined by grand canonical Monte Carlo (GCMC) simulation, before the theoretical adsorption isotherms of these investigated carbons calculated by the model are compared with the experimental adsorption measurements of the carbons. We illustrate the accuracy and consistency of the FWT model for the prediction of adsorption isotherms of the all investigated gases. The pore network connectivity problem occurring in the examined carbons is also discussed, and on the basis of the success of the predictions assuming a similar pore size distribution for accessible and inaccessible regions, it is suggested that this is largely related to the disordered nature of the carbon.
Resumo:
We present a new version of non-local density functional theory (NL-DFT) adapted to description of vapor adsorption isotherms on amorphous materials like non-porous silica. The novel feature of this approach is that it accounts for the roughness of adsorbent surface. The solid–fluid interaction is described in the same framework as in the case of fluid–fluid interactions, using the Weeks–Chandler–Andersen (WCA) scheme and the Carnahan–Starling (CS) equation for attractive and repulsive parts of the Helmholtz free energy, respectively. Application to nitrogen and argon adsorption isotherms on non-porous silica LiChrospher Si-1000 at their boiling points, recently published by Jaroniec and co-workers, has shown an excellent correlative ability of our approach over the complete range of pressures, which suggests that the surface roughness is mostly the reason for the observed behavior of adsorption isotherms. From the analysis of these data, we found that in the case of nitrogen adsorption short-range interactions between oxygen atoms on the silica surface and quadrupole of nitrogen molecules play an important role. The approach presented in this paper may be further used in quantitative analysis of adsorption and desorption isotherms in cylindrical pores such as MCM-41 and carbon nanotubes.
Resumo:
The concept of a monotone family of functions, which need not be countable, and the solution of an equilibrium problem associated with the family are introduced. A fixed-point theorem is applied to prove the existence of solutions to the problem.
Resumo:
This paper presents a thermodynamic analysis of capillary condensation phenomena in cylindrical pores. Here, we modified the Broekhoff and de Boer (BdB) model for cylindrical pores accounting for the effect of the pore radius on the potential exerted by the pore walls. The new approach incorporates the recently published standard nitrogen and argon adsorption isotherm on nonporous silica LiChrospher Si-1000. The developed model is tested against the nonlocal density functional theory (NLDFT), and the criterion for this comparison is the condensation/evaporation pressure versus the pore diameter. The quantitative agreement between the NLDFT and the refined version of the BdB theory is ascertained for pores larger than 2 nm. The modified BdB theory was applied to the experimental adsorption branch of adsorption isotherms of a number of MCM-41 samples to determine their pore size distributions (PSDs). It was found that the PSDs determined with the new BdB approach coincide with those determined with the NLDFT (also using the experimental adsorption branch). As opposed to the NLDFT, the modified BdB theory is very simple in its utilization and therefore can be used as a convenient tool to obtain PSDs of all mesoporous solids from the analysis of the adsorption branch of adsorption isotherms of any subcritical fluids.
Resumo:
The extent of swelling of cross-linked poly(dimethylsiloxane) and linear low-density poly(ethylene) in supercritical CO2 has been investigated using high-pressure NMR spectroscopy and microscopy. Poly(dimethylsiloxane) was cross-linked to four different cross-link densities and swollen in supercritical CO2. The Flory-Huggins interaction parameter, x, was found to be 0.62 at 300 bar and 45 degrees C, indicating that supercritical CO2 is a relatively poor solvent compared to toluene or benzene. Linear low-density poly(ethylene) was shown to exhibit negligible swelling upon exposure to supercritical CO2 up to 300 bar. The effect Of CO2 pressure on the amorphous region of the poly(ethylene) was investigated by observing changes in the H-1 T-2 relaxation times of the polymer. These relaxation times decreased with increasing pressure, which was attributed to a decrease in mobility of the polymer chains as a result of compressive pressure.
Resumo:
Liquidus temperatures and phase equilibria have been determined in the olivine primary phase field of the MgO-FeO-SiO2-Al2O3 system. Liquidus isotherms have been determined in the temperature range from 1748 to 1873K. The results are presented in the form of pseudo-ternary sections of the MgO-FeO-SiO2 with 2 and 3wt% Al2O3 in the liquid. The study enables the liquidus to be described for a range of SiO2/MgO ratios. It was found that liquidus temperatures in the olivine primary phase field decrease with the addition of Al2O3.
Resumo:
The effects of alumina and chromite impurities on the liquidus temperatures in the cristobalite/tridymite (SiO2) primary phase fields in the MgO-FeO-SiO, system in equilibrium with metallic iron have been investigated experimentally. Using high temperature equilibration and quenching followed by electron probe X-ray microanalysis (EPMA), liquiclus isotherms have been determined in the temperatures range 1 673 to 1 898 K. The results are presented in the form of pseudo-ternary sections of the MgO-FeO-SiO, system at 2, 3 and 5 wt% Al2O3, 2 wt% Cr2O3, and 2 wt% Cr2O3+2 wt% Al2O3. The study enables the liquidus to be described for a range of SiO2/MgO and MgO/FeO ratios. It was found that liquiclus temperatures in the cristobalite and tridymite primary phase fields, decrease significantly with the addition of Al2O3 and Cr2O3.
Resumo:
(Magill, M., Quinzii, M., 2002. Capital market equilibrium with moral hazard. Journal of Mathematical Economics 38, 149-190) showed that, in a stockmarket economy with private information, the moral hazard problem may be resolved provided that a spanning overlap condition is satisfed. This result depends on the assumption that the technology is given by a stochastic production function with a single scalar input. The object of the present paper is to extend the analysis of Magill and Quinzii to the case of multiple inputs. We show that their main result extends to this general case if and only if, for each firm, the number of linearly independent combinations of securities having payoffs correlated with, but not dependent on, the firms output is equal to the number of degrees of freedom in the firm's production technology.
Resumo:
The objective of this review is to draw attention to potential pitfalls in attempts to glean mechanistic information from the magnitudes of standard enthalpies and entropies derived from the temperature dependence of equilibrium and rate constants for protein interactions. Problems arise because the minimalist model that suffices to describe the energy differences between initial and final states usually comprises a set of linked equilibria, each of which is characterized by its own energetics. For example, because the overall standard enthalpy is a composite of those individual values, a positive magnitude for AHO can still arise despite all reactions within the subset being characterized by negative enthalpy changes: designation of the reaction as being entropy driven is thus equivocal. An experimenter must always bear in mind the fact that any mechanistic interpretation of the magnitudes of thermodynamic parameters refers to the reaction model rather than the experimental system For the same reason there is little point in subjecting the temperature dependence of rate constants for protein interactions to transition-state analysis. If comparisons with reported values of standard enthalpy and entropy of activation are needed, they are readily calculated from the empirical Arrhenius parameters. Copyright (c) 2006 John Wiley & Sons, Ltd.