6 resultados para Environmental regulation

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding and predicting the distribution of organisms in heterogeneous environments lies at the heart of ecology, and the theory of density-dependent habitat selection (DDHS) provides ecologists with an inferential framework linking evolution and population dynamics. Current theory does not allow for temporal variation in habitat quality, a serious limitation when confronted with real ecological systems. We develop both a stochastic equivalent of the ideal free distribution to study how spatial patterns of habitat use depend on the magnitude and spatial correlation of environmental stochasticity and also a stochastic habitat selection rule. The emerging patterns are confronted with deterministic predictions based on isodar analysis, an established empirical approach to the analysis of habitat selection patterns. Our simulations highlight some consistent patterns of habitat use, indicating that it is possible to make inferences about the habitat selection process based on observed patterns of habitat use. However, isodar analysis gives results that are contingent on the magnitude and spatial correlation of environmental stochasticity. Hence, DDHS is better revealed by a measure of habitat selectivity than by empirical isodars. The detection of DDHS is but a small component of isodar theory, which remains an important conceptual framework for linking evolutionary strategies in behavior and population dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern toxicology investigates a wide array of both old and new health hazards. Priority setting is needed to select agents for research from the plethora of exposure circumstances. The changing societies and a growing fraction of the aged have to be taken into consideration. A precise exposure assessment is of importance for risk estimation and regulation. Toxicology contributes to the exploration of pathomechanisms to specify the exposure metrics for risk estimation. Combined effects of co-existing agents are not yet sufficiently understood. Animal experiments allow a separate administration of agents which can not be disentangled by epidemiological means, but their value is limited for low exposure levels in many of today's settings. As an experimental science, toxicology has to keep pace with the rapidly growing knowledge about the language of the genome and the changing paradigms in cancer development. During the pioneer era of assembling a working draft of the human genome, toxicogenomics has been developed. Gene and pathway complexity have to be considered when investigating gene-environment interactions. For a best conduct of studies, modem toxicology needs a close liaison with many other disciplines like epidemiology and bioinformatics. (C) 2004 Elsevier Ireland Ltd. All rights reserved.