119 resultados para Environmental management -- Font de Can Verdaguer (St. Gregori, Gironès)
em University of Queensland eSpace - Australia
Resumo:
Trees in plantations established for timber production are usually grown at a sufficiently high density that canopy closure occurs within a relatively short time after planting. The trees then shade and outcompete most herbs, shrubs or grasses growing at the site. The closer the spacing (i.e. the greater the density) the faster this will occur. Subsequently, as the trees grow larger, this between-species competition is replaced by within-species competition. If unmanaged, this competition can reduce the commercial productivity of the plantation. Thus, there are two management dilemmas. One is knowing the best initial planting density. The second is knowing how to management the subsequent between-tree competition in order to optimize overall plantation timber productivity. In this chapter we consider initial spacing and thinning for high value timber trees grown in single and mixed species plantations. From growth studies in stands of different ages recommendations are proposed for managing both types of plantations where the primary objective is timber production. It seems that many rainforest species will require more space to achieve optimal growth than most eucalypts and conifers. On the other hand many rainforest species do not have strong apical dominance. Care will be needed to balance these two attributes.
Resumo:
In natural estuaries, contaminant transport is driven by the turbulent momentum mixing. The predictions of scalar dispersion can rarely be predicted accurately because of a lack of fundamental understanding of the turbulence structure in estuaries. Herein detailed turbulence field measurements were conducted at high frequency and continuously for up to 50 hours per investigation in a small subtropical estuary with semi-diurnal tides. Acoustic Doppler velocimetry was deemed the most appropriate measurement technique for such small estuarine systems with shallow water depths (less than 0.5 m at low tides), and a thorough post-processing technique was applied. The estuarine flow is always a fluctuating process. The bulk flow parameters fluctuated with periods comparable to tidal cycles and other large-scale processes. But turbulence properties depended upon the instantaneous local flow properties. They were little affected by the flow history, but their structure and temporal variability were influenced by a variety of mechanisms. This resulted in behaviour which deviated from that for equilibrium turbulent boundary layer induced by velocity shear only. A striking feature of the data sets is the large fluctuations in all turbulence characteristics during the tidal cycle. This feature was rarely documented, but an important difference between the data sets used in this study from earlier reported measurements is that the present data were collected continuously at high frequency during relatively long periods. The findings bring new lights in the fluctuating nature of momentum exchange coefficients and integral time and length scales. These turbulent properties should not be assumed constant.
Resumo:
Slumping of hardsetting seedbeds upon wetting has not been extensively studied despite the likelihood that it determines the physical properties after drying. Slumping results from processes similar to those involved in crusting except that overburden pressure can dominate rather than rainfall kinetic energy. Only a few studies have dealt with the morphological description of slumping. To simulate different climatic and management conditions, repacked seedbeds of a hardsetting sandy-loam soil were subjected to a range of wetting conditions, e.g. capillary rise, immersion, and rainfall simulation. Slumping processes were characterized using qualitative and quantitative micromorphological observations of polished blocks and thin sections from resin-impregnated samples. A morphogenetical framework was proposed to help description of the complex associations of processes which can lead to structural collapse (crusting and slumping) on wetting. Three main stages were considered, i.e. aggregate disruption or abrasion, relocation of the released material, and compaction. In the hardsetting material studied here, structural collapse under slow wetting occurred at the bottom of cores due to aggregate coalescence under overburden pressure. Coalescence required aggregate cohesion being reduced by microcracking; therefore, it differed from the coalescence previously described in unstable silty loam soils where microcracking was not necessary for aggregates to coalesce. Macroporosity decreased most strongly under fast wetting due to physical dispersion and aggregate breakdown. Under simulated rainfall, compaction by raindrops could not be distinguish from aggregate breakdown. The role of overburden pressure and of rainfall kinetic energy remains to be stated; new data are required including measurement of total porosity in the initial, wet, and dry states. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Coastal wetlands are dynamic and include the freshwater-intertidal interface. In many parts of the world such wetlands are under pressure from increasing human populations and from predicted sea-level rise. Their complexity and the limited knowledge of processes operating in these systems combine to make them a management challenge.Adaptive management is advocated for complex ecosystem management (Hackney 2000; Meretsky et al. 2000; Thom 2000;National Research Council 2003).Adaptive management identifies management aims,makes an inventory/environmental assessment,plans management actions, implements these, assesses outcomes, and provides feedback to iterate the process (Holling 1978;Walters and Holling 1990). This allows for a dynamic management system that is responsive to change. In the area of wetland management recent adaptive approaches are exemplified by Natuhara et al. (2004) for wild bird management, Bunch and Dudycha (2004) for a river system, Thom (2000) for restoration, and Quinn and Hanna (2003) for seasonal wetlands in California. There are many wetland habitats for which we currently have only rudimentary knowledge (Hackney 2000), emphasizing the need for good information as a prerequisite for effective management. The management framework must also provide a way to incorporate the best available science into management decisions and to use management outcomes as opportunities to improve scientific understanding and provide feedback to the decision system. Figure 9.1 shows a model developed by Anorov (2004) based on the process-response model of Maltby et al. (1994) that forms a framework for the science that underlies an adaptive management system in the wetland context.
Resumo:
A recent study by Brook ef al. empirically tested the performance of population viability analysis (PVA) using data from 21 populations across a wide range of species. The study concluded that PVAs are good at predicting the future dynamics of populations. We suggest that this conclusion is a result of a bias in the studies that Brook et al, included in their analyses, We present arguments that PVAs can only be accurate at predicting extinction probabilities if data are extensive and reliable, and if the distribution of vital rates between individuals and years can be assumed stationary in the future, or if any changes can be accurately predicted. In particular, we note th at although catastrophes are likely to have precipitated many extinctions, estimates of the probability of catastrophes are unreliable.
Resumo:
Resources can be aggregated both within and between patches. In this article, we examine how aggregation at these different scales influences the behavior and performance of foragers. We developed an optimal foraging model of the foraging behavior of the parasitoid wasp Cotesia rubecula parasitizing the larvae of the cabbage butterfly Pieris rapae. The optimal behavior was found using stochastic dynamic programming. The most interesting and novel result is that the effect of resource aggregation within and between patches depends on the degree of aggregation both within and between patches as well as on the local host density in the occupied patch, but lifetime reproductive success depends only on aggregation within patches. Our findings have profound implications for the way in which we measure heterogeneity at different scales and model the response of organisms to spatial heterogeneity.