9 resultados para Enterotoxigenic

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & Aims: We have developed a therapeutic strategy for gastrointestinal infections that is based on molecular mimicry of host receptors for bacterial toxins on the surface of harmless gut bacteria. The aim of this study was to apply this to the development of a recombinant probiotic for treatment and prevention of diarrheal disease caused by enterotoxigenic Escherichia coli strains that produce heat-labile enterotoxin. Methods: This was achieved by expressing glycosyltransferase genes from Neisseria meningitidis or Campylobacter jejuni in a harmless Escherichia coli strain (CWG:308), resulting in the production of a chimeric lipopolysaccharide capable of binding heat-labile enterotoxin with high avidity. Results: The strongest heat-labile enterotoxin binding was achieved with a construct (CWG308:pLNT) that expresses a mimic of lacto-N-neotetraose, which neutralized ≥ 93.8% of the heat-labile enterotoxin activity in culture lysates of diverse enterotoxigenic Escherichia coli strains of both human and porcine origin. When tested with purified heat-labile enterotoxin, it was capable of adsorbing approximately 5% of its own weight of toxin. Weaker toxin neutralization was achieved with a construct that mimicked the ganglioside GM2. Preabsorption with, or coadministration of, CWG308:pLNT also resulted in significant in vivo protection from heat-labile enterotoxin-induced fluid secretion in rabbit ligated ileal loops. Conclusions: Toxin-binding probiotics such as those described here have considerable potential for prophylaxis and treatment of enterotoxigenic Escherichia coli-induced travelers' diarrhea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of enterotoxigenic Escherichia coli (ETEC) to pre-weaning diarrhoea was investigated over a 6 month period at five selected commercial piggeries (CPs) in north Vietnam with at least 100 sows each. Diarrhoea was found to affect 71(.)5% of the litters born during the period of study. Of 406 faecal specimens submitted for bacteriological culture, 200 (49(.)3%) yielded a heavy pure culture of E coli and 126(31 %)were confirmed by PCR to carry at least one of eight porcine ETEC virulence genes. ETEC was responsible for 43% of cases of diarrhoea in neonatal pigs during the first 4 days of life and 23(.)9% of the remaining cases up until the age of weaning. Pathotypes were determined by PCR for the 126 ETEC isolates together with 44 ETEC isolates obtained from village pigs (VPs) raised by smallholder farmers. The CP isolates belonged to five pathotypes, four of which were also identified in VP isolates. Haemolytic serogroup O149: K91 isolates that belonged to F4/STa/STb/LT were most commonly identified in both CPs (33 % of isolates) and VPs (45(.)5%). Other combinations identified in both production systems included O64 (F5/STa), O101 (F4/STa/STb) and O-nontypable (F-/STb). A high proportion of CP isolates (22(.)3 %) possessed all three enterotoxins (STa/STWLT), lacked the genes for all five tested fimbriae (F4, F5, F6, F41 and F18) and belonged to serogroup O8. These unusual 08 F- isolates were haemolytic and were isolated from all ages of diarrhoeic piglets at each CP, suggesting that they have pathogenic potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of uni- and multiplex PCR assays targeting 58 virulence genes (VGs) associated with Escherichia coli strains causing intestinal and extraintestinal disease in humans and other mammals was used to analyze the VG repertoire of 23 commensal E. coli isolates from healthy pigs and 52 clinical isolates associated with porcine neonatal diarrhea (ND) and postweaning diarrhea (PWD). The relationship between the presence and absence of VGs was interrogated using three statistical methods. According to the generalized linear model, 17 of 58 VGs were found to be significant (P < 0.05) in distinguishing between commensal and clinical isolates. Nine of the 17 genes represented by iha, hlyA, aidA, east1, aah, fimH, iroN(E).(coli), traT, and saa have not been previously identified as important VGs in clinical porcine isolates in Australia. The remaining eight VGs code for fimbriae (F4, F5, F18, and F41) and toxins (STa, STh, LT, and Stx2), normally associated with porcine enterotoxigenic E. coli. Agglomerative hierarchical algorithm analysis grouped E. coli strains into subclusters based primarily on their serogroup. Multivariate analyses of clonal relationships based on the 17 VGs were collapsed into two-dimensional space by principal coordinate analysis. PWD clones were distributed in two quadrants, separated from ND and commensal clones, which tended to cluster within one quadrant. Clonal subclusters within quadrants were highly correlated with serogroups. These methods of analysis provide different perspectives in our attempts to understand how commensal and clinical porcine enterotoxigenic E. coli strains have evolved and are engaged in the dynamic process of losing or acquiring VGs within the pig population.