53 resultados para Energy-based model
em University of Queensland eSpace - Australia
Resumo:
An energy-based swing hammer mill model has been developed for coke oven feed preparation. it comprises a mechanistic power model to determine the dynamic internal recirculation and a perfect mixing mill model with a dual-classification function to mimic the operations of crusher and screen. The model parameters were calibrated using a pilot-scale swing hammer mill at various operating conditions. The effects of the underscreen configurations and the feed sizes on hammer mill operations were demonstrated through the fitted model parameters. Relationships between the model parameters and the machine configurations were established. The model was validated using the independent experimental data of single lithotype coal tests with the same BJD pilot-scale hammer mill and full operation audit data of an industrial hammer mill. The outcome of the energy-based swing hammer mill model is the capability to simulate the impact of changing blends of coal or mill configurations and operating conditions on product size distribution. Alternatively, the model can be used to select the machine settings required to achieve a desired product. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
In this second counterpoint article, we refute the claims of Landy, Locke, and Conte, and make the more specific case for our perspective, which is that ability-based models of emotional intelligence have value to add in the domain of organizational psychology. In this article, we address remaining issues, such as general concerns about the tenor and tone of the debates on this topic, a tendency for detractors to collapse across emotional intelligence models when reviewing the evidence and making judgments, and subsequent penchant to thereby discount all models, including the ability-based one, as lacking validity. We specifically refute the following three claims from our critics with the most recent empirically based evidence: (1) emotional intelligence is dominated by opportunistic academics-turned-consultants who have amassed much fame and fortune based on a concept that is shabby science at best; (2) the measurement of emotional intelligence is grounded in unstable, psychometrically flawed instruments, which have not demonstrated appropriate discriminant and predictive validity to warrant/justify their use; and (3) there is weak empirical evidence that emotional intelligence is related to anything of importance in organizations. We thus end with an overview of the empirical evidence supporting the role of emotional intelligence in organizational and social behavior.
Resumo:
In this paper, we present a framework for pattern-based model evolution approaches in the MDA context. In the framework, users define patterns using a pattern modeling language that is designed to describe software design patterns, and they can use the patterns as rules to evolve their model. In the framework, design model evolution takes place via two steps. The first step is a binding process of selecting a pattern and defining where and how to apply the pattern in the model. The second step is an automatic model transformation that actually evolves the model according to the binding information and the pattern rule. The pattern modeling language is defined in terms of a MOF-based role metamodel, and implemented using an existing modeling framework, EMF, and incorporated as a plugin to the Eclipse modeling environment. The model evolution process is also implemented as an Eclipse plugin. With these two plugins, we provide an integrated framework where defining and validating patterns, and model evolution based on patterns can take place in a single modeling environment.
Resumo:
This paper describes a process-based metapopulation dynamics and phenology model of prickly acacia, Acacia nilotica, an invasive alien species in Australia. The model, SPAnDX, describes the interactions between riparian and upland sub-populations of A. nilotica within livestock paddocks, including the effects of extrinsic factors such as temperature, soil moisture availability and atmospheric concentrations of carbon dioxide. The model includes the effects of management events such as changing the livestock species or stocking rate, applying fire, and herbicide application. The predicted population behaviour of A. nilotica was sensitive to climate. Using 35 years daily weather datasets for five representative sites spanning the range of conditions that A. nilotica is found in Australia, the model predicted biomass levels that closely accord with expected values at each site. SPAnDX can be used as a decision-support tool in integrated weed management, and to explore the sensitivity of cultural management practices to climate change throughout the range of A. nilotica. The cohort-based DYMEX modelling package used to build and run SPAnDX provided several advantages over more traditional population modelling approaches (e.g. an appropriate specific formalism (discrete time, cohort-based, process-oriented), user-friendly graphical environment, extensible library of reusable components, and useful and flexible input/output support framework). (C) 2003 Published by Elsevier Science B.V.
Resumo:
This paper summarises test results that were used to validate a model and scale-up procedure of the high pressure grinding roll (HPGR) which was developed at the JKMRC by Morrell et al. [Morrell, Lim, Tondo, David,1996. Modelling the high pressure grinding rolls. In: Mining Technology Conference, pp. 169-176.]. Verification of the model is based on results from four data sets that describe the performance of three industrial scale units fitted with both studded and smooth roll surfaces. The industrial units are currently in operation within the diamond mining industry and are represented by De Beers, BHP Billiton and Rio Tinto. Ore samples from the De Beers and BHP Billiton operations were sent to the JKMRC for ore characterisation and HPGR laboratory-scale tests. Rio Tinto contributed an historical data set of tests completed during a previous research project. The results conclude that the modelling of the HPGR process has matured to a point where the model may be used to evaluate new and to optimise existing comminution circuits. The model prediction of product size distribution is good and has been found to be strongly dependent of the characteristics of the material being tested. The prediction of throughput and corresponding power draw (based on throughput) is sensitive to inconsistent gap/diameter ratios observed between laboratory-scale tests and full-scale operations. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The particle-based lattice solid model developed to study the physics of rocks and the nonlinear dynamics of earthquakes is refined by incorporating intrinsic friction between particles. The model provides a means for studying the causes of seismic wave attenuation, as well as frictional heat generation, fault zone evolution, and localisation phenomena. A modified velocity-Verlat scheme that allows friction to be precisely modelled is developed. This is a difficult computational problem given that a discontinuity must be accurately simulated by the numerical approach (i.e., the transition from static to dynamical frictional behaviour). This is achieved using a half time step integration scheme. At each half time step, a nonlinear system is solved to compute the static frictional forces and states of touching particle-pairs. Improved efficiency is achieved by adaptively adjusting the time step increment, depending on the particle velocities in the system. The total energy is calculated and verified to remain constant to a high precision during simulations. Numerical experiments show that the model can be applied to the study of earthquake dynamics, the stick-slip instability, heat generation, and fault zone evolution. Such experiments may lead to a conclusive resolution of the heat flow paradox and improved understanding of earthquake precursory phenomena and dynamics. (C) 1999 Academic Press.
Resumo:
Efficient separation of fuel gas (H2) from other gases in reformed gas mixtures is becoming increasingly important in the development of alternative energy systems. A highly efficient and new technology available for these separations is molecular sieve silica (MSS) membranes derived from tetraethyl-orthosilicate (TEOS). A permeation model is developed from an analogous electronic system and compared to transport theory to determine permeation, selectivity and apparent activation of energy based on experimental values. Experimental results for high quality membranes show single gas permselectivity peaking at 57 for H2/CO at 150°C with a H2 permeation of 5.14 x 10^-8 mol.m^-2.s^-1.Pa^-1. Higher permeance was also achieved, but at the expense of selectivity. This is the case for low quality membranes with peak H2 permeation at 1.78 x 10-7 mol.m-2.s-1.Pa-1 at 22°C and H2/CO permselectivity of 4.5. High quality membranes are characterised with positive apparent activation energy while the low quality membranes have negative values. The model had a good fit of r-squared of 0.99-1.00 using the experimental data.
Resumo:
Observations of accelerating seismic activity prior to large earthquakes in natural fault systems have raised hopes for intermediate-term eartquake forecasting. If this phenomena does exist, then what causes it to occur? Recent theoretical work suggests that the accelerating seismic release sequence is a symptom of increasing long-wavelength stress correlation in the fault region. A more traditional explanation, based on Reid's elastic rebound theory, argues that an accelerating sequence of seismic energy release could be a consequence of increasing stress in a fault system whose stress moment release is dominated by large events. Both of these theories are examined using two discrete models of seismicity: a Burridge-Knopoff block-slider model and an elastic continuum based model. Both models display an accelerating release of seismic energy prior to large simulated earthquakes. In both models there is a correlation between the rate of seismic energy release with the total root-mean-squared stress and the level of long-wavelength stress correlation. Furthermore, both models exhibit a systematic increase in the number of large events at high stress and high long-wavelength stress correlation levels. These results suggest that either explanation is plausible for the accelerating moment release in the models examined. A statistical model based on the Burridge-Knopoff block-slider is constructed which indicates that stress alone is sufficient to produce accelerating release of seismic energy with time prior to a large earthquake.
Resumo:
Previous research shows that correlations tend to increase in magnitude when individuals are aggregated across groups. This suggests that uncorrelated constellations of personality variables (such as the primary scales of Extraversion and Neuroticism) may display much higher correlations in aggregate factor analysis. We hypothesize and report that individual level factor analysis can be explained in terms of Giant Three (or Big Five) descriptions of personality, whereas aggregate level factor analysis can be explained in terms of Gray's physiological based model. Although alternative interpretations exist, aggregate level factor analysis may correctly identify the basis of an individual's personality as a result of better reliability of measures due to aggregation. We discuss the implications of this form of analysis in terms of construct validity, personality theory, and its applicability in general. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Queensland fruit fly, Bactrocera (Dacus) tryoni (QFF) is arguably the most costly horticultural insect pest in Australia. Despite this, no model is available to describe its population dynamics and aid in its management. This paper describes a cohort-based model of the population dynamics of the Queensland fruit fly. The model is primarily driven by weather variables, and so can be used at any location where appropriate meteorological data are available. In the model, the life cycle is divided into a number of discreet stages to allow physiological processes to be defined as accurately as possible. Eggs develop and hatch into larvae, which develop into pupae, which emerge as either teneral females or males. Both females and males can enter reproductive and over-wintering life stages, and there is a trapped male life stage to allow model predictions to be compared with trap catch data. All development rates are temperature-dependent. Daily mortality rates are temperature-dependent, but may also be influenced by moisture, density of larvae in fruit, fruit suitability, and age. Eggs, larvae and pupae all have constant establishment mortalities, causing a defined proportion of individuals to die upon entering that life stage. Transfer from one immature stage to the next is based on physiological age. In the adult life stages, transfer between stages may require additional and/or alternative functions. Maximum fecundity is 1400 eggs per female per day, and maximum daily oviposition rate is 80 eggs/female per day. The actual number of eggs laid by a female on any given day is restricted by temperature, density of larva in fruit, suitability of fruit for oviposition, and female activity. Activity of reproductive females and males, which affects reproduction and trapping, decreases with rainfall. Trapping of reproductive males is determined by activity, temperature and the proportion of males in the active population. Limitations of the model are discussed. Despite these, the model provides a useful agreement with trap catch data, and allows key areas for future research to be identified. These critical gaps in the current state of knowledge exist despite over 50 years of research on this key pest. By explicitly attempting to model the population dynamics of this pest we have clearly identified the research areas that must be addressed before progress can be made in developing the model into an operational tool for the management of Queensland fruit fly. (C) 2003 Published by Elsevier B.V.
Resumo:
A dual resistance model with distribution of either barrier or pore diffusional activation energy is proposed in this work for gas transport in carbon molecular sieve (CMS) micropores. This is a novel approach in which the equilibrium is homogeneous, but the kinetics is heterogeneous. The model seems to provide a possible explanation for the concentration dependence of the thermodynamically corrected barrier and pore diffusion coefficients observed in previous studies from this laboratory on gas diffusion in CMS.(1.2) The energy distribution is assumed to follow the gamma distribution function. It is shown that the energy distribution model can fully capture the behavior described by the empirical model established in earlier studies to account for the concentration dependence of thermodynamically corrected barrier and pore diffusion coefficients. A methodology is proposed for extracting energy distribution parameters, and it is further shown that the extracted energy distribution parameters can effectively predict integral uptake and column breakthrough profiles over a wide range of operating pressures.
Resumo:
The recent deregulation in electricity markets worldwide has heightened the importance of risk management in energy markets. Assessing Value-at-Risk (VaR) in electricity markets is arguably more difficult than in traditional financial markets because the distinctive features of the former result in a highly unusual distribution of returns-electricity returns are highly volatile, display seasonalities in both their mean and volatility, exhibit leverage effects and clustering in volatility, and feature extreme levels of skewness and kurtosis. With electricity applications in mind, this paper proposes a model that accommodates autoregression and weekly seasonals in both the conditional mean and conditional volatility of returns, as well as leverage effects via an EGARCH specification. In addition, extreme value theory (EVT) is adopted to explicitly model the tails of the return distribution. Compared to a number of other parametric models and simple historical simulation based approaches, the proposed EVT-based model performs well in forecasting out-of-sample VaR. In addition, statistical tests show that the proposed model provides appropriate interval coverage in both unconditional and, more importantly, conditional contexts. Overall, the results are encouraging in suggesting that the proposed EVT-based model is a useful technique in forecasting VaR in electricity markets. (c) 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
Resumo:
Domain specific information retrieval has become in demand. Not only domain experts, but also average non-expert users are interested in searching domain specific (e.g., medical and health) information from online resources. However, a typical problem to average users is that the search results are always a mixture of documents with different levels of readability. Non-expert users may want to see documents with higher readability on the top of the list. Consequently the search results need to be re-ranked in a descending order of readability. It is often not practical for domain experts to manually label the readability of documents for large databases. Computational models of readability needs to be investigated. However, traditional readability formulas are designed for general purpose text and insufficient to deal with technical materials for domain specific information retrieval. More advanced algorithms such as textual coherence model are computationally expensive for re-ranking a large number of retrieved documents. In this paper, we propose an effective and computationally tractable concept-based model of text readability. In addition to textual genres of a document, our model also takes into account domain specific knowledge, i.e., how the domain-specific concepts contained in the document affect the document’s readability. Three major readability formulas are proposed and applied to health and medical information retrieval. Experimental results show that our proposed readability formulas lead to remarkable improvements in terms of correlation with users’ readability ratings over four traditional readability measures.
Resumo:
In this paper, we describe a model of the human visual system (HVS) based on the wavelet transform. This model is largely based on a previously proposed model, but has a number of modifications that make it more amenable to potential integration into a wavelet based image compression scheme. These modifications include the use of a separable wavelet transform instead of the cortex transform, the application of a wavelet contrast sensitivity function (CSP), and a simplified definition of subband contrast that allows us to predict noise visibility directly from wavelet coefficients. Initially, we outline the luminance, frequency, and masking sensitivities of the HVS and discuss how these can be incorporated into the wavelet transform. We then outline a number of limitations of the wavelet transform as a model of the HVS, namely the lack of translational invariance and poor orientation sensitivity. In order to investigate the efficacy of this wavelet based model, a wavelet visible difference predictor (WVDP) is described. The WVDP is then used to predict visible differences between an original and compressed (or noisy) image. Results are presented to emphasize the limitations of commonly used measures of image quality and to demonstrate the performance of the WVDP, The paper concludes with suggestions on bow the WVDP can be used to determine a visually optimal quantization strategy for wavelet coefficients and produce a quantitative measure of image quality.