11 resultados para Energy flow
em University of Queensland eSpace - Australia
Resumo:
The sponge Tetilla sp. (Tetractinomorpha: Tetillidae) is a common species in the eastern Mediterranean. This sponge inhabits four different habitat types differing in wave impact and irradiance levels. Two of these habitats (a shallow cave and deep water) are characterized by relatively calm water, whereas the other two (shallow exposed site and tide pools) are in turbulent water with high energy flow. The present study examined the influence of physical (depth, illumination and water motion) and biotic factors on morphology, skeletal plasticity and reproductive traits among the four spatially separated populations. Sponges from tidal pools had significantly larger body volume than sponges from deep water and from shallow caves (ANOVA: tidal-deep P< 0.0001; tidal-shallow caves P< 0.05). Sponges from exposed habitats were significantly larger than deep-water sponges (ANOVA: P=0.01). In addition, individuals from tide pools and from the exposed habitat had a significantly higher proportion of structural silica than sponges from the calmer deep water and from the cave sites. Oxea spicules in sponges from the calm habitats were significantly shorter than in those from the tidal pools and the exposed habitats. The percentage of spicules out of a sponge's dry weight in individuals transplanted from deep (calm) to shallow (turbulent) water significantly increased by 21.9&PLUSMN; 12.9%. The new spicule percentage did not differ significantly from that of sponges originally from shallow water. Oocyte diameter differed significantly between habitats. The maximal size of mature eggs was found in deep-water sponges in June (97&PLUSMN; 5 μ m). In the shallow habitats, a smaller maximal oocyte diameter was found in the cave, in May (56.5&PLUSMN; 3 μ m). Furthermore, oocyte density in shallow-water sponges was highest in May and decreased in June (with 88.2&PLUSMN; 9 and 19.3&PLUSMN; 9 oocytes mm(-2), respectively). At the same time (June), oocyte density of deep-water sponges had just reached its maximum (155&PLUSMN; 33.7 oocytes mm(-2)). The difference in oocyte size and density between deep- and shallow-water individuals indicates an earlier gamete release in the shallow sponge population. The results suggest that plasticity in skeletal design of this sponge indicates a trade off between spicule production and investment in reproduction.
Resumo:
Four mine waste beach longitudinal profile equations are compared theoretically and in statistical analyses of profile data from 64 field and laboratory beaches formed by mine tailings, co-disposed coal mine wastes, and sand. All four equations fit the profile data well. The best performing equation both accounts for particle sorting and satisfies hydraulic constraints, and the combination of assumptions underlying it is considered to best represent the processes occurring on mine waste beaches. Combining these assumptions with the Lacey normal equation leads to a variant of the Manning resistance equation. Features that it is desirable to incorporate in theoretical and numerical models of mine waste beaches are listed.
Resumo:
This paper proposes a transmission and wheeling pricing method based on the monetary flow tracing along power flow paths: the monetary flow-monetary path method. Active and reactive power flows are converted into monetary flows by using nodal prices. The method introduces a uniform measurement for transmission service usages by active and reactive powers. Because monetary flows are related to the nodal prices, the impacts of generators and loads on operation constraints and the interactive impacts between active and reactive powers can be considered. Total transmission service cost is separated into more practical line-related costs and system-wide cost, and can be flexibly distributed between generators and loads. The method is able to reconcile transmission service cost fairly and to optimize transmission system operation and development. The case study on the IEEE 30 bus test system shows that the proposed pricing method is effective in creating economic signals towards the efficient use and operation of the transmission system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A critical assessment is presented for the existing fluid flow models used for dense medium cyclones (DMCs) and hydrocyclones. As the present discussion indicates, the understanding of dense medium cyclone flow is still far from the complete. However, its similarity to the hydrocyclone provides a basis for improved understanding of fluid flow in DMCs. The complexity of fluid flow in DMCs is basically due to the existence of medium as well as the dominance of turbulent particle size and density effects on separation. Both the theoretical and experimental analysis is done with respect to two-phase motions and solid phase flow in hydrocyclones or DMCs. A detailed discussion is presented on the empirical, semiempirical, and the numerical models based upon both the vorticity-stream function approach and Navier-Stokes equations in their primitive variables and in cylindrical coordinates available in literature. The existing equations describing turbulence and multiphase flows in cyclone are also critically reviewed.
Resumo:
Stirred Mills are becoming increasingly used for fine and ultra-fine grinding. This technology is still poorly understood when used in the mineral processing context. This makes process optimisation of such devices problematic. 3D DEM simulations of the flow of grinding media in pilot scale tower mills and pin mills are carried out in order to investigate the relative performance of these stirred mills. In the first part of this paper, media flow patterns and energy absorption rates and distributions were analysed to provide a good understanding of the media flow and the collisional environment in these mills. In this second part we analyse steady state coherent flow structures, liner stress and wear by impact and abrasion. We also examine mixing and transport efficiency. Together these provide a comprehensive understanding of all the key processes operating in these mills and a clear understanding of the relative performance issues. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Stirred mills are becoming increasingly used for fine and ultra-fine grinding. This technology is still poorly understood when used in the mineral processing context. This makes process optimisation of such devices problematic. 3D DEM simulations of the flow of grinding media in pilot scale tower mills and pin mills are carried out in order to investigate the relative performance of these stirred mills. Media flow patterns and energy absorption rates and distributions are analysed here. In the second part of this paper, coherent flow structures, equipment wear and mixing and transport efficiency are analysed. (C) 2006 Published by Elsevier Ltd.
Resumo:
A new integration scheme is developed for nonequilibrium molecular dynamics simulations where the temperature is constrained by a Gaussian thermostat. The utility of the scheme is demonstrated by its application to the SLLOD algorithm which is the standard nonequilibrium molecular dynamics algorithm for studying shear flow. Unlike conventional integrators, the new integrators are constructed using operator-splitting techniques to ensure stability and that little or no drift in the kinetic energy occurs. Moreover, they require minimum computer memory and are straightforward to program. Numerical experiments show that the efficiency and stability of the new integrators compare favorably with conventional integrators such as the Runge-Kutta and Gear predictor-corrector methods. (C) 1999 American Institute of Physics. [S0021-9606(99)50125-6].
Resumo:
Turbulent flow around a rotating circular cylinder has numerous applications including wall shear stress and mass-transfer measurement related to the corrosion studies. It is also of interest in the context of flow over convex surfaces where standard turbulence models perform poorly. The main purpose of this paper is to elucidate the basic turbulence mechanism around a rotating cylinder at low Reynolds numbers to provide a better understanding of flow fundamentals. Direct numerical simulation (DNS) has been performed in a reference frame rotating at constant angular velocity with the cylinder. The governing equations are discretized by using a finite-volume method. As for fully developed channel, pipe, and boundary layer flows, a laminar sublayer, buffer layer, and logarithmic outer region were observed. The level of mean velocity is lower in the buffer and outer regions but the logarithmic region still has a slope equal to the inverse of the von Karman constant. Instantaneous flow visualization revealed that the turbulence length scale typically decreases as the Reynolds number increases. Wavelet analysis provided some insight into the dependence of structural characteristics on wave number. The budget of the turbulent kinetic energy was computed and found to be similar to that in plane channel flow as well as in pipe and zero pressure gradient boundary layer flows. Coriolis effects show as an equivalent production for the azimuthal and radial velocity fluctuations leading to their ratio being lowered relative to similar nonrotating boundary layer flows.