21 resultados para Endocarp s coconut
em University of Queensland eSpace - Australia
Resumo:
Past studies from our laboratory have shown that whole immature, or mature sliced, zygotic embryos are a very good starting explant for coconut somatic embryogenesis. The highest rate of somatic embryogenesis was obtained when certain polyamines were added into the culture medium as well as activated charcoal (AC) to absorb unwanted phenolics. These past studies also showed that the development and maturation of the somatic embryos produced could be improved by the addition of abscisic acid (ABA), alone or with one of several osmotically active agents, into the culture medium. In the present study this well characterised somatic embryogenic system for zygotic tissues is being modified and applied to somatic tissues. This recent approach should be a better method for the rapid production of clonal, true-to-type coconut palms. The present research approach is focused on young leaf section explants which have been found to be very responsive to callus production. Young leaf sections produced optimum callus when cultured on media containing 2,4-D (150 μM) and the amount produced could be increased by soaking the sections in sterile water (15 to 60 minutes) or ascorbic acid (15 to 30 minutes) prior to culturing. Further improvement in callus production, as well as a reduction in the time taken for callogenesis was obtained when casein hydrolysate and/or certain polyamines were added to the callus induction medium. The development of the somatic embryos was improved by using ABA and polyethylene glycol (PEG) in the maturation medium. Despite these initial successes in improving coconut somatic embryogenesis, further studies are now being considered to shorten the time to achieve somatic embryogenesis, to better germinate somatic embryos and to improve the rate of somatic seedling conversion into plantlets.
Resumo:
Of those explants tested, immature zygotic embryo tissues proved to be the best for initiating callus with potential for somatic embryogenesis. Slicing of this tissue and use of the central sections (near to and including the meristematic tissue) gave the best embryogenic response. Slices that were placed under illumination necrosed more rapidly and to a greater degree than those incubated in the dark. Explant slice necrosis could be prevented or severely retarded by the addition of activated charcoal into the medium. Washing the explants for short periods of time prior to culture was also found to improve callus production. Prolonged washing resulted in low rates of callus production. In an attempt to prevent ethylene accumulation in the culture vessel headspace, AVG, an ethylene biosynthesis inhibitor and STS, a chemical which reduces the physiological action of ethylene, were successfully used to promote somatic embryogenesis. Spermidine, putrescine and spermine, polyamines that are known to delay plant senescence and promote somatic embryogenesis in some plant species, enhanced the rate of somatic embryogenesis when they were introduced into the callus induction medium. The use of polyethylene glycol in combination with abscisic acid helped promote somatic embryo formation and maturation as well as the subsequent formation of plantlets. The use of all of these improvements together has created a new and improved protocol for coconut somatic embryogenesis. This new protocol puts significant emphasis on improving the in vitro ecology of the explant, callus and somatic embryogenic tissues.
Resumo:
Proceedings of the International Coconut Forum held in Cairns, Australia, 22-24 November 2005. Coconut is one of the most important crops grown in the humid tropics, with more than 11 million farmers, mostly smallholders with low income, growing the palm in 90 countries. These proceedings document the vast range of topics covered in the forum, including R&D, business and government, and regional and international agency interests.