53 resultados para Emission Spectra

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previously reported excitation spectra for eumelanin are sparse and inconsistent. Moreover, these studies have failed to account for probe beam attenuation and emission reabsorption within the samples, making them qualitative at best. We report for the first time quantitative excitation spectra for synthetic eumelanin, acquired for a range of solution concentrations and emission wavelengths. Our data indicate that probe beam attenuation and emission reabsorption significantly affect the spectra even in low-concentration eumelanin solutions and that previously published data do not reflect the true excitation profile. We apply a correction procedure (previously applied to emission spectra) to account for these effects. Application of this procedure reconstructs the expected relationship of signal intensity with concentration, and the normalized spectra show a similarity in form to the absorption profiles. These spectra reveal valuable information regarding the photophysics and photochemistry of eumelanin. Most notably, an excitation peak at 365 urn (3.40 eV), whose position is independent of emission wavelength, is possibly attributable to a 5,6-dihydroxyindole-2-carboxylic acid (DHICA) component singly linked to a polymeric structure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spectroscopic studies of pheomelanin and its constituents have been sparse. These data present what is by far the most complete description of the fluorescence characteristics of synthetic pheomelanin. Emission spectra between 260 and 600 nm were acquired,for excitation wavelengths between 250 and 500 nm at 1-nm intervals. A quantum yield map is also presented, correcting the fluorescence intensities for differences in species concentration and molar absorptivity. These fluorescence features exhibit interesting similarities and differences to eumelanin, and these data are interpreted with respect to possible chemical structures. Overall, these data suggest that pheomelanin oligomers may be more tightly coupled than those of eumelanin. Finally, the quantum yield is shown to be on the order of 10(-4) and exhibit a complex dependence on excitation energy, varying by a factor of 4 across the energies employed here. (c) 2006 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report absolute values for the radiative relaxation quantum yield of synthetic eumelanin as a function of excitation energy. These values were determined by correcting for pump beam attenuation and emission reabsorption in both eumelanin samples and fluorescein standards over a large range of concentrations. Our results confirm that eumelanins are capable of dissipating >99.9% of absorbed UV and visible radiation through nonradiative means. Furthermore, we have found that the radiative quantum yield of synthetic eumelanin is excitation energy dependent. This observation is supported by corrected emission spectra, which also show a clear dependence of both peak position and peak width on excitation energy. Our findings indicate that photoluminescence emission in eumelanins is derived from ensembles of small chemically distinct oligomeric units that can be selectively pumped. This hypothesis lends support to the theory that the basic structural unit of eumelanin is oligomeric rather than heteropolymeric.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polarized absorption and emission spectra of trigonal single crystals of an Er(III) complex coordinated to a heptadentate tripodal ligand are reported at temperatures between 8 and 298 K. The assigned energy levels below the onset of ligand absorption (< 25 000 cm(-1)) are fitted to a parametrized electronic Hamiltonian. The C-3 site symmetry of the Er(HI) ion requires eight parameters for a full description of the ligand field within a one-electron operator description. This compound shows unusually large splittings of the multiplets, and the fitted parameters imply that this heptadentate ligand imparts the largest ligand field reported for an Er(III) complex. The ligand field was also interpreted within the angular overlap model (AOM). We derive the AOM matrix to include both sigma and anisotropic pi bonding and show that a useful description of the C-3 ligand field can be made using only five parameters. The success of the AOM description is encouraging for applications on isomorphous complexes within the lanthanide series and in describing the ligand field of low-symmetry complexes with less parameters than in the usual spherical harmonic expansion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple emission peaks have been observed from surface passivated PbS nanocrystals displaying strong quantum confinement. The emission spectra are shown to be strongly dependent on the excited-state parity. We also find that intraband energy relaxation from initial states excited far above the band-edge is nearly three orders of magnitude slower than that found in other nanocrystal quantum dots, providing evidence of inefficient energy relaxation via phonon emission. The initial-state parity dependence of the photoluminescent emission properties suggests that energy relaxation from the higher excited states occurs via a radiative cascade, analogous to energy relaxation in atomic systems. Such radiative cascade emission is possible from ideal zero-dimensional semiconductors, where electronic transitions can be decoupled from phonon modes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a detailed photoluminescence study of cysteinyldopa-melanin ( CDM), the synthetic analogue of pheomelanin. Emission spectra are shown to be a far more sensitive probe of CDM's spectroscopic behavior than are absorption spectra. Although CDM and dopa-melanin ( DM, the synthetic analogue of eumelanin) have very similar absorption spectra, we find that they have very different excitation and emission characteristics; CDM has two distinct photoluminescence peaks that do not shift with excitation wavelength. Additionally, our data suggest that the radiative quantum yield of CDM is excitation energy dependent, an unusual property among biomolecules that is indicative of a chemically disordered system. Finally, we find that the radiative quantum yield for CDM is similar to 0.2%, twice that of DM, although still extremely low. This means that 99.8% of the energy absorbed by CDM is dissipated via nonradiative pathways, consistent with its role as a pigmentary photoprotectant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We optimized the emission efficiency from a microcavity OLEDs consisting of widely used organic materials, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq(3)) as emitting and electron transporting layer. LiF/Al was considered as a cathode, while metallic Ag anode was used. TiO2 and Al2O3 layers were stacked on top of the cathode to alter the properties of the top mirror. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that for certain TiO2 and Al2O3 layer thicknesses, light output is enhanced as a result of the increase in both the reflectance and transmittance of the top mirror. Once the optimum structure has been determined, the microcavity OLED devices can be fabricated and characterized, and comparisons between experiments and theory can be made.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on the effect of the replacement of the conventional ITO anode with the semitransparent metallic material on the performance of microcavity OLEDs. We performed comprehensive simulations of the emission from microcavity OLEDs consisting of widely used organic materials, N,N′-di(naphthalene-1- yl)-N,N′-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq3) as emitting and electron transporting layer. Silver and LiF/Al were considered as a cathode, while metallic (Au and Ag) anode was used and simulations were performed on devices with both the metallic and conventional ITO anode. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that the metallic anode enhances light output and that optimum emission from a microcavity OLED is achieved when the position of the recombination region is aligned with the antinode of the standing wave inside the cavity. The microcavity OLED devices with Ag/Ag and Ag/Au mirrors were fabricated and characterized. The experimental results have been compared to the simulations and the influence of the different anode, emission region width and position on the performance of microcavity OLEDs was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measure the spectral properties of a representative sub-sample of 187 quasars, drawn from the Parkes Half-Jansky, Flat-radio-spectrum Sample (PHFS). Quasars with a wide range of rest-frame optical/UV continuum slopes are included in the analysis: their colours range over 2 < B-K < 7. We present composite spectra of red and blue sub-samples of the PHFS quasars. and tabulate their emission line properties. The median Hbeta and [0 111] emission line equivalent widths of the red quasar sub-sample are a factor of ten weaker than those of the blue quasar sub-sample. No significant differences are seen between the equivalent width distributions of the C IV, C III] and Mg 11 lines. Both the colours and the emission line equivalent widths of the red quasars can be explained by the addition of a featureless red synchrotron continuum component to an otherwise normal blue quasar spectrum. The red synchrotron component must have a spectrum at least as red as a power-law of the form F-nu proportional to nu(-2.8). The relative strengths of the blue and red components span two orders of magnitude at rest-frame 500 nm. The blue component is weaker relative to the red component in low optical luminosity sources. This suggests that the fraction of accretion energy going into optical emission from the jet is greater in low luminosity quasars. This correlation between colour and luminosity may be of use in cosmological distance scale work. This synchrotron model does not, however, fit similar to10% of the quasars, which have both red colours and high equivalent width emission lines. We hypothesise that these red, strong-lined quasars have intrinsically weak Big Blue Bumps. There is no discontinuity in spectral properties between the BL Lac objects in our sample and the other quasars. BL Lac objects appear to be the red, low equivalent width tail of a continuous distribution. The synchrotron emission component only dominates the spectrum at longer wavelengths, so existing BL Lac surveys will be biased against high redshift objects. This will affect measurements of BL Lac evolution. The blue PHFS quasars have significantly higher equivalent width C IV, Hbeta and [0 111] emission than a matched sample of optically selected QSOs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time evolution of the populations of the collective states of a two-atom system in a squeezed vacuum can exhibit quantum beats. We show that the effect appears only when the carrier frequency of the squeezed field is detuned from the atomic resonance. Moreover, we find that the quantum beats are not present for the case in which the two-photon correlation strength is the maximum possible for a field with a classical analog. We also show that the population inversion between the excited collective states, found for the resonant squeezed vacuum, is sensitive to the detuning and the two-photon correlations. For large detunings or a field with a classical analog there is no inversion between the collective states. Observation of the quantum beats or the population inversion would confirm the essentially quantum-mechanical nature of the squeezed vacuum. (C) 1997 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong photoluminescent emission has been obtained from 3 nm PbS nanocrystals in aqueous colloidal solution, following treatment with CdS precursors. The observed emission can extend across the entire visible spectrum and usually includes a peak near 1.95 eV. We show that much of the visible emission results from absorption by higher-lying excited states above 3.0 eV with subsequent relaxation to and emission from states lying above the observed band-edge of the PbS nanocrystals. The fluorescent lifetimes for this emission are in the nanosecond regime, characteristic of exciton recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel strategy for fast NMR resonance assignment of N-15 HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively N-15-labeled samples. Comparison of sensitive undecoupled N-15 HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia Coll DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy.