58 resultados para Emerging Modelling Paradigms and Model Coupling

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important consideration in the development of mathematical models for dynamic simulation, is the identification of the appropriate mathematical structure. By building models with an efficient structure which is devoid of redundancy, it is possible to create simple, accurate and functional models. This leads not only to efficient simulation, but to a deeper understanding of the important dynamic relationships within the process. In this paper, a method is proposed for systematic model development for startup and shutdown simulation which is based on the identification of the essential process structure. The key tool in this analysis is the method of nonlinear perturbations for structural identification and model reduction. Starting from a detailed mathematical process description both singular and regular structural perturbations are detected. These techniques are then used to give insight into the system structure and where appropriate to eliminate superfluous model equations or reduce them to other forms. This process retains the ability to interpret the reduced order model in terms of the physico-chemical phenomena. Using this model reduction technique it is possible to attribute observable dynamics to particular unit operations within the process. This relationship then highlights the unit operations which must be accurately modelled in order to develop a robust plant model. The technique generates detailed insight into the dynamic structure of the models providing a basis for system re-design and dynamic analysis. The technique is illustrated on the modelling for an evaporator startup. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this second paper, the three structural measures which have been developed are used in the modelling of a three stage centrifugal synthesis gas compressor. The goal of this case study is to determine the essential mathematical structure which must be incorporated into the compressor model to accurately model the shutdown of this system. A simple, accurate and functional model of the system is created via three structural measures. It was found that the model can be correctly reduced into its basic modes and that the order of the differential system can be reduced from 51(st) to 20(th). Of the 31 differential equational 21 reduce to algebraic relations, 8 become constants and 2 can be deleted thereby increasing the algebraic set from 70 to 91 equations. An interpretation is also obtained as to which physical phenomena are dominating the dynamics of the compressor add whether the compressor will enter surge during the shutdown. Comparisons of the reduced model performance against the full model are given, showing the accuracy and applicability of the approach. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to analyse the effect of modelling assumptions in a formal, rigorous way, a syntax of modelling assumptions has been defined. The syntax of modelling assumptions enables us to represent modelling assumptions as transformations acting on the set of model equations. The notion of syntactical correctness and semantical consistency of sets of modelling assumptions is defined and methods for checking them are described. It is shown on a simple example how different modelling assumptions act on the model equations and their effect on the differential index of the resulted model is also indicated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For many years in the area of business systems analysis and design, practitioners and researchers alike have been searching for some comprehensive basis on which to evaluate, compare, and engineer techniques that are promoted for use in the modelling of systems' requirements. To date, while many frameworks, factors, and facets have been forthcoming, none appear to be based on a sound theory. In light of this dilemma, over the last 10 years, attention has been devoted by researchers to the use of ontology to provide some theoretical basis for the advancement of the business systems modelling discipline. This paper outlines how we have used a particular ontology for this purpose over the last five years. In particular we have learned that the understandability and the applicability of the selected ontology must be clear for IS professionals, the results of any ontological evaluation must be tempered by economic efficiency considerations of the stakeholders involved, and ontologies may have to be focused for the business purpose and type of user involved in the modelling situation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid earth simulations have recently been developed to address issues such as natural disasters, global environmental destruction and the conservation of natural resources. The simulation of solid earth phenomena involves the analysis of complex structures including strata, faults, and heterogeneous material properties. Simulation of the generation and cycle of earthquakes is particularly important, but such simulations require the analysis of complex fault dynamics. GeoFEM is a parallel finite-element analysis system intended for solid earth field phenomena problems. This paper describes recent development in the GeoFEM project for the simulation of earthquake generation and cycles.