2 resultados para Electronic optimization

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO2 concentration and, hence, global warming. Capture and disposal Of CO2 has received increased R&D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO2 emissions. This paper addresses CO2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO2 can be transported through pipelines in the form of a gas, a supercritical. fluid or in the subcooled liquid state. Operationally, most CO2 pipelines used for enhanced oil recovery transport CO2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the Cost Of CO2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO2 below its critical point of 31.1 degrees C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions. (c) 2005 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We optimized the emission efficiency from a microcavity OLEDs consisting of widely used organic materials, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq(3)) as emitting and electron transporting layer. LiF/Al was considered as a cathode, while metallic Ag anode was used. TiO2 and Al2O3 layers were stacked on top of the cathode to alter the properties of the top mirror. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that for certain TiO2 and Al2O3 layer thicknesses, light output is enhanced as a result of the increase in both the reflectance and transmittance of the top mirror. Once the optimum structure has been determined, the microcavity OLED devices can be fabricated and characterized, and comparisons between experiments and theory can be made.