47 resultados para Electronic drives of three-phase induction motor
em University of Queensland eSpace - Australia
Resumo:
The combined approach of the molecular-kinetic and hydrodynamic theories for description of the motion of three-phase gas-liquid-solid contact lines has been examined using the Wilhelmy plate method. The whole dynamic meniscus has been divided into molecular, hydrodynamic, and static-like regions. The Young-Laplace equation and the molecular-kinetic and hydrodynamic dewetting theories have been applied to describe the meniscus profiles and contact angle. The dissipative forces accompanying the dynamic dewetting have also been investigated. The experiments with a Wilhelmy plate made from an acrylic polymer sheet were carried out using a computerized apparatus for contact angle analysis (OCA 20, DataPhysics, Germany). The extrapolated dynamic contact angle versus velocity of the three-phase contact line for Milli-Q water and 5 x 10(-4) M SDBS solution was experimentally obtained and compared with the combined MHD models with low and moderate Reynolds numbers. The models predict similar results for the extrapolated contact angle. SDBS decreases the equilibrium contact angle and increases the molecular jumping length but does not affect the molecular frequency significantly. The hydrodynamic deformation of the meniscus, viscous dissipation, and friction were also influenced by the SDBS surfactant. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A study of spin-orbit mixing and nephelauxetic effects in the electronic spectra of nickel(II)-encapsulating complexes involving mixed nitrogen and sulfur donors is reported. As the number of sulfur donors is systematically varied through the series [Ni(N6-xSx)](2+) (x = 0-6), the spin-forbidden (3)A(2)g --> E-1(g) and (3)A(2g) --> (1)A(1g) transitions undergo a considerable reduction in energy whereas the spin-allowed transitions are relatively unchanged. The [Ni(diAMN(6)sar)](2+) and [Ni(AMN(5)Ssar)](2+) complexes exhibit an unusual band shape for the (3)A(2g) --> T-3(2g) transition which is shown to arise from spin-orbit mixing of the E spin-orbit levels associated with the E-1(g) and T-3(2g) states. A significant differential nephelauxetic effect also arises from the covalency differences between the t(2g) and e(g) orbitals with the result that no single set of Racah B and C interelectron repulsion parameters adequately fit the observed spectra. Using a differential covalency ligand-field model, the spectral transitions are successfully reproduced with three independent variables corresponding to 10Dq and the covalency parameters f(t) and f(e), associated with the t(2g) and e(g) orbitals, respectively. The small decrease in f(t) from unity is largely attributed to central-field covalency effects whereas the dramatic reduction in f(e) with increasing number of sulfur donors is a direct consequence of the increased metal-ligand covalency associated with the sulfur donors. Covalency differences between the t(2g) and e(g) orbitals also result in larger 10Dq values than those obtained simply from the energy of the (3)A(2g) --> T-3(2g) spin-allowed transition.
Resumo:
The characterization of three commercial activated carbons was carried out using the adsorption of various compounds in the aqueous phase. For this purpose the generalized adsorption isotherm was employed, and a modification of the Dubinin-Radushkevich pore filling model, incorporating repulsive contributions to the pore potential as well as bulk liquid phase nonideality, was used as the local isotherm. Eight different flavor compounds were used as adsorbates, and the isotherms were jointly fitted to yield a common pore size distribution for each carbon. The bulk liquid phase nonideality was incorporated through the UNIFAC activity coefficient model, and the repulsive contribution to the pore potential was incorporated through the Steele 10-4-3 potential model. The mean micropore network coordination number for each carbon was also determined from the fitted saturation capacity based on percolation theory. Good agreement between the model and the experimental data was observed. In addition, excellent agreement between the bimodal gamma pore size distribution and density functional theory-cum-regularization-based pore size distribution obtained by argon adsorption was also observed, supporting the validity of the model. The results show that liquid phase adsorption, using adsorptive molecules of different sizes, can be an effective means of characterizing the pore size distribution as well as connectivity. Alternately, if the carbon pore size distribution is independently known, the method can be used to measure critical molecular sizes. (C) 2001 Elsevier Science.
Resumo:
Increasingly, electropalatography (EPG) is being used in speech pathology research to identify and describe speech disorders of neurological origin. However, limited data currently exists that describes normal articulatory segment timing and the degree of variability exhibited by normal speakers when assessed with EPG. Therefore, the purpose of the current investigation was to use the Reading EPG3 system to quantify segmental timing values and examine articulatory timing variability for three English consonants. Ten normal subjects repeated ten repetitions of CV words containing the target consonants /t/, /l/, and /s/ while wearing an artificial palate. The target consonants were followed by the /i/ vowel and were contained in the carrier phrase 'I saw a __'. Mean duration of the approach, closure/constriction, and release phases of consonant articulation were calculated. In addition, inter-subject articulatory timing variability was investigated using descriptive graphs and intra-subject articulatory timing variability was investigated using a coefficient of variation. Results revealed the existence of intersubject variability for mean segment timing values. This could be attributed to individual differences in the suprasegmental features of speech and individual differences in oral cavity size and structure. No significant differences were reported for degree of intra-subject variability between the three sounds for these same phases of articulation. However, when this data set was collapsed, results revealed that the closure/constriction phase of consonant articulation exhibited significantly less intra-subject variability than both the approach and release phases. The stabilization of the tongue against the fixed structure of the hard palate during the closure phase of articulation may have reduced the levels of intra-subject variability.
Resumo:
Understanding the mechanism of liquid-phase evaporation in a three-phase fixed-bed reactor is of practical importance, because the reaction heat is usually 7-10 times the vaporization heat of the liquid components. Evaporation, especially the liquid dryout, can largely influence the reactor performance and even safety. To predict the vanishing condition of the liquid phase, Raoult's law was applied as a preliminary approach, with the liquid vanishing temperature defined based on a liquid flow rate of zero. While providing correct trends, Raoult's law exhibits some limitation in explaining the temperature profile in the reactor. To comprehensively understand the whole process of liquid evaporation, a set of experiments on inlet temperature, catalyst activity, liquid flow rate, gas flow rate, and operation pressure were carried out. A liquid-region length-predicting equation is suggested based on these experiments and the principle of heat balance.
Resumo:
The PEG-Ficoll polymer phase system is one that has been overlooked in the past for biotechnology applications because of the stability of its emulsions. However, new applications, such as emulsion coating of cells, are appearing that rely on this very property. Ficoll is highly polydisperse and multimodal with three distinct Ficoll peaks in gel permeation chromatography. As a result, the transition between one-phase and two-phase systems is blurred and the binodials obtained through turbidometric titration and tie-line analysis differ significantly. Moreover, since the three Ficoll peaks partition differently, tie-line analysis cannot be described by a simple model of the aqueous two-phase system. A simple modification to the model allowed for excellent fit, and this modification may prove well-suited for the many practical cases where aqueous two-phase systems fail to display parallel tie-lines as implicitly assumed in the simpler model.
Resumo:
To understand performance of evasive and interceptive actions it is important to know how people decide when to initiate a movement - initiating at the 'right' moment is often essential for successful performance. It has been proposed that initiation is triggered when a perceptually derived quantity reaches an invariant criterion value. Candidate quantities include time-to-collision (TTC), distance, and rate of image expansion ( ROE), all of which have received empirical support. We studied initiation of an evasive manoeuvre in a computer-simulated steering task in which the observer was required to steer through a stationary visual environment and avoid colliding with an obstacle in their path. The results could not be explained by hypotheses which propose that evasive manoeuvre initiation is based on a fixed criterion value of TTC or distance. The overall pattern was, however, consistent with the use of a criterion ROE value. This was further tested by analyses designed to directly evaluate whether the ROE value used to initiate the response was the same across experimental conditions. Only two of the six participants showed evidence for using the ROE strategy.
Resumo:
Articulatory imprecision has been documented as a key perceptual feature of the dysarthria associated with childhood cerebellar tumor (CCT). As yet the underlying acoustic and physiological characteristics of motor speech production that contribute to this perceptual feature have not been identified. The aim of the current study was to describe perceptual and acoustic characteristics of consonant production in three children with dysarthria associated with CCT The results indicated that in all three cases the timing of articulatory movements during stop consonant production differed from that measured in a control group of same-age peers. The impact of cerebellar lesions in adulthood on articulatory gestures is used as a reference for discussing the findings of the current study with similarities evident. Also discussed are future research directions for examining the underlying acoustic or physiological basis for articulatory imprecision in children with dysarthria associated with CCT.
Resumo:
Temperature is an important parameter controlling protein crystal growth. A new temperature-screening system (Thermo-screen) is described consisting of a gradient thermocycler fitted with a special crystallization-plate adapter onto which a 192-well sitting-drop crystallization plate can be mounted (temperature range 277-372 K; maximum temperature gradient 20 K; interval precision 0.3 K). The system allows 16 different conditions to be monitored simultaneously over a range of 12 temperatures and is well suited to conduct wide (similar to 20 K) and fine (similar to 3 K) temperature-optimization screens. It can potentially aid in the determination of temperature phase diagrams and run more complex temperature-cycling experiments for seeding and crystal growth.
Resumo:
This study was to investigate the impacts of operating conditions and liquid properties on the hydrodynamics and volumetric mass transfer coefficient in activated sludge air-lift reactors. Experiments were conducted in internal and external air-lift reactors. The activated sludge liquid displayed a non-Newtonian rheological behavior. With an increase in the superficial gas velocity, the liquid circulation velocity, gas holdup and mass transfer coefficient increased, and the gas residence time decreased. The liquid circulation velocity, gas holdup and the mass transfer coefficient decreased as the sludge loading increased. The flow regime in the activated sludge air-lift reactors had significant effect on the liquid circulation velocity and the gas holdup, but appeared to have little impact on the mass transfer coefficient. The experimental results in this study were best described by the empirical models, in which the reactor geometry, superficial gas velocity and/or power consumption unit, and solid and fluid properties were employed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The simplest model of three coupled Bose-Einstein condensates is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean-field approximation. This semiclassical analysis, using system symmetries, shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points, and our analysis shows that the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, and undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays a dynamical transition. The quantum case has collapse and revival sequences superimposed on the semiclassical dynamics, reflecting the underlying discreteness of the spectrum. Nonzero circular current states are also demonstrated as one of the higher-dimensional effects displayed in this system.
Resumo:
The integrable open-boundary conditions for the model of three coupled one-dimensional XY spin chains are considered in the framework of the quantum inverse scattering method. The diagonal boundary K-matrices are found and a class of integrable boundary terms is determined. The boundary model Hamiltonian is solved by using the coordinate space Bethe ansatz technique and Bethe ansatz equations are derived. (C) 1998 Elsevier Science B.V.
Resumo:
We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.