7 resultados para Electronic data processing documentation.
em University of Queensland eSpace - Australia
Resumo:
Background and purpose Survey data quality is a combination of the representativeness of the sample, the accuracy and precision of measurements, data processing and management with several subcomponents in each. The purpose of this paper is to show how, in the final risk factor surveys of the WHO MONICA Project, information on data quality were obtained, quantified, and used in the analysis. Methods and results In the WHO MONICA (Multinational MONItoring of trends and determinants in CArdiovascular disease) Project, the information about the data quality components was documented in retrospective quality assessment reports. On the basis of the documented information and the survey data, the quality of each data component was assessed and summarized using quality scores. The quality scores were used in sensitivity testing of the results both by excluding populations with low quality scores and by weighting the data by its quality scores. Conclusions Detailed documentation of all survey procedures with standardized protocols, training, and quality control are steps towards optimizing data quality. Quantifying data quality is a further step. Methods used in the WHO MONICA Project could be adopted to improve quality in other health surveys.
Resumo:
The schema of an information system can significantly impact the ability of end users to efficiently and effectively retrieve the information they need. Obtaining quickly the appropriate data increases the likelihood that an organization will make good decisions and respond adeptly to challenges. This research presents and validates a methodology for evaluating, ex ante, the relative desirability of alternative instantiations of a model of data. In contrast to prior research, each instantiation is based on a different formal theory. This research theorizes that the instantiation that yields the lowest weighted average query complexity for a representative sample of information requests is the most desirable instantiation for end-user queries. The theory was validated by an experiment that compared end-user performance using an instantiation of a data structure based on the relational model of data with performance using the corresponding instantiation of the data structure based on the object-relational model of data. Complexity was measured using three different Halstead metrics: program length, difficulty, and effort. For a representative sample of queries, the average complexity using each instantiation was calculated. As theorized, end users querying the instantiation with the lower average complexity made fewer semantic errors, i.e., were more effective at composing queries. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Although managers consider accurate, timely, and relevant information as critical to the quality of their decisions, evidence of large variations in data quality abounds. Over a period of twelve months, the action research project reported herein attempted to investigate and track data quality initiatives undertaken by the participating organisation. The investigation focused on two types of errors: transaction input errors and processing errors. Whenever the action research initiative identified non-trivial errors, the participating organisation introduced actions to correct the errors and prevent similar errors in the future. Data quality metrics were taken quarterly to measure improvements resulting from the activities undertaken during the action research project. The action research project results indicated that for a mission-critical database to ensure and maintain data quality, commitment to continuous data quality improvement is necessary. Also, communication among all stakeholders is required to ensure common understanding of data quality improvement goals. The action research project found that to further substantially improve data quality, structural changes within the organisation and to the information systems are sometimes necessary. The major goal of the action research study is to increase the level of data quality awareness within all organisations and to motivate them to examine the importance of achieving and maintaining high-quality data.
Resumo:
Even when data repositories exhibit near perfect data quality, users may formulate queries that do not correspond to the information requested. Users’ poor information retrieval performance may arise from either problems understanding of the data models that represent the real world systems, or their query skills. This research focuses on users’ understanding of the data structures, i.e., their ability to map the information request and the data model. The Bunge-Wand-Weber ontology was used to formulate three sets of hypotheses. Two laboratory experiments (one using a small data model and one using a larger data model) tested the effect of ontological clarity on users’ performance when undertaking component, record, and aggregate level tasks. The results indicate for the hypotheses associated with different representations but equivalent semantics that parsimonious data model participants performed better for component level tasks but that ontologically clearer data model participants performed better for record and aggregate level tasks.