7 resultados para Electrolyte Beverages

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of solutions that prevent dehydration or promote adequate re-hydration play a vital role in preventing fatigue during exercise, however, the methods commonly used to assess the hydration ability of such solutions are invasive and often assess the components of absorption separately. This paper describes using a non-invasive deuterium tracer technique that assesses gastric emptying and intestinal absorption simultaneously to evaluate the uptake of water during rest and exercise. The kinetics of absorption are further examined by mathematical modelling of the data generated. For the rest group, 0.05 g/kg of body weight of deuterium, contained in gelatine capsules, was ingested with ordinary tap water and saliva samples were collected every 5 min for one hour while the subject remained seated. The deuterium was administered as above for the exercise group but sample collection was during one hour of exercise on a treadmill at 55% of the subject's maximum heart rate. The enrichment data for each subject were mathematically modelled and the parameters obtained were compared across groups using an independent samples t-test. Compared with the rest condition, the exercise group showed delayed absorption of water as indicated by significant differences for the modelling parameters t(2), t(1/2), maximum absorption rate and solution absorption amount at t(1). Labelling with a deuterium tracer is a good measure of the relative rate ingested fluids are absorbed by the body. Mathematical modelling of the data generates rates of maximum absorption and allows calculation of the percentage of the solution that is absorbed at any given time during the testing period. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Dental erosion is highly prevalent today, and acidic drinks are thought to be an important cause. The aim of the present investigation was to determine the erosive potential of a range of common beverages on extracted human teeth. Methods: The beverages were tested for their individual pHs using a pH meter. The clinical effects of the most erosive beverages were determined by the degree of etching and Vickers microhardness of enamel. Results: The results showed that many common beverages have pHs sufficiently low to cause enamel erosion. Lime juice concentrate (pH 2.1) had the lowest pH, followed by Coca-cola and Pepsi (both with pH 2.3) and Lucozade (pH 2.5). The erosive potential of these beverages was demonstrated by the deep etching of the enamel after five minutes. The Vickers Hardness of enamel was reduced by about 50 per cent is the case of lime juice (p < 0.001) and 24 per cent in the case of Coca-cola (p < 0.004). Addition of saliva to 50 per cent (v/v) of Coca-cola completely reversed the erosive effects on the enamel. Conclusion: Although only a few of the beverages with the lowest pHs were tested, the present study showed that the most acidic drinks had the greatest erosive effects on enamel. While saliva was protective against erosion, relatively large volumes were required to neutralize the acidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigated the galvanic corrosion of the magnesium alloy AZ91D coupled to steel. The galvanic current distribution was measured in 5% NaCl solution, corrosive water and an auto coolant. The experimental measurements were compared with predictions from a Boundary Element Method (BEM) model. The boundary condition, required as an input into the BEM model, needs to be a polarization curve that accurately reflects the corrosion process. Provided that the polarization curve does reflect steady state, the BEM model is expected to be able to reflect steady state galvanic corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operation of polymer electrolyte membrane fuel cells (PEMFCs) with dry feeds has been examined with different fuel cell flow channel designs as functions of pressure, temperature and flow rate. Auto-humidified (or self-humidifying) PEMFC operation is improved at higher pressures and low gas velocities where axial dispersion enhances back-mixing of the product water with the dry feed. We demonstrate auto-humidified operation of the channel-less, self-draining fuel cell, based on a stirred tank reactor; data is presented showing auto-humidified operation from 25 to 115 degrees C at 1 and 3 atm. Design and operating requirements are derived for the auto-humidified operation of the channel-less, self-draining fuel cell. The auto-humidified self-draining fuel cell outperforms a fully humidified serpentine flow channel fuel cell at high current densities. The new design offers substantial benefits for simplicity of operation and control including: the ability to self-drain reducing flooding, the ability to uniformly disperse water removing current gradients and the ability to operate on dry feeds eliminating the need for humidifiers. Additionally, the design lends itself well to a modular design concept. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrolyte Transport in the Mammalian Colon: Mechanisms and Implications for Disease. Physiol. Rev. 82: 245-289, 2002.The colonic epithelium has both absorptive and secretory functions. The transport is characterized by a net absorption of NaCl, short-chain fatty acids (SCFA), and water, allowing extrusion of a feces with very little water and salt content. In addition, the epithelium does secret mucus, bicarbonate, and KCl. Polarized distribution of transport proteins in both luminal and basolateral membranes enables efficient salt transport in both directions, probably even within an individual cell. Meanwhile, most of the participating transport proteins have been identified, and their function has been studied in detail. Absorption of NaCl is a rather steady process that is controlled by steroid hormones regulating the expression of epithelial Na+ channels (ENaC), the Na+-K+-ATPase, and additional modulating factors such as the serum- and glucocorticoid-regulated kinase SGK. Acute regulation of absorption may occur by a Na+ feedback mechanism and the cystic fibrosis transmembrane conductance regulator (CFTR). Cl- secretion in the adult colon relies on luminal CFTR, which is a cAMP-regulated Cl- channel and a regulator of other transport proteins. As a consequence, mutations in CFTR result in both impaired Cl- secretion and enhanced Na+ absorption in the colon of cystic fibrosis (CF) patients. Ca2+- and cAMP-activated basolateral K+ channels support both secretion and absorption of electrolytes and work in concert with additional regulatory proteins, which determine their functional and pharmacological profile. Knowledge of the mechanisms of electrolyte transport in the colon enables the development of new strategies for the treatment of CF and secretory diarrhea. It will also lead to a better understanding of the pathophysiological events during inflammatory bowel disease and development of colonic carcinoma.