47 resultados para Electricity commercialization

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power systems rely greatly on ancillary services in maintaining operation security. As one of the most important ancillary services, spinning reserve must be provided effectively in the deregulated market environment. This paper focuses on the design of an integrated market for both electricity and spinning reserve service with particular emphasis on coordinated dispatch of bulk power and spinning reserve services. A new market dispatching mechanism has been developed to minimize the ISO's total payment while ensuring system security. Genetic algorithms are used in the finding of the global optimal solutions for this dispatching problem. Case studies and corresponding analyses haw been carried out to demonstrate and discuss the efficiency and usefulness of the proposed market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on measuring the extent to which market power has been exercised in a recently deregulated electricity generation sector. Our study emphasises the need to consider the concept of market power in a long-run dynamic context. A market power index is constructed focusing on differences between actual market returns and long-run competitive returns, estimated using a programming model devised by the authors. The market power implications of hedge contracts are briefly considered. The state of Queensland Australia is used as a context for the analysis. The results suggest that generators have exercised significant market power since deregulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of undesirable electricity price spikes in a competitive electricity market requires an efficient auction mechanism. However, many of the existing auction mechanism have difficulties in suppressing such unreasonable price spikes effectively. A new auction mechanism is proposed to suppress effectively unreasonable price spikes in a competitive electricity market. It optimally combines system marginal price auction and pay as bid auction mechanisms. A threshold value is determined to activate the switching between the marginal price auction and the proposed composite auction. Basically when the system marginal price is higher than the threshold value, the composite auction for high price electricity market is activated. The winning electricity sellers will sell their electricity at the system marginal price or their own bid prices, depending on their rights of being paid at the system marginal price and their offers' impact on suppressing undesirable price spikes. Such economic stimuli discourage sellers from practising economic and physical withholdings. Multiple price caps are proposed to regulate strong market power. We also compare other auction mechanisms to highlight the characteristics of the proposed one. Numerical simulation using the proposed auction mechanism is given to illustrate the procedure of this new auction mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a transmission and wheeling pricing method based on the monetary flow tracing along power flow paths: the monetary flow-monetary path method. Active and reactive power flows are converted into monetary flows by using nodal prices. The method introduces a uniform measurement for transmission service usages by active and reactive powers. Because monetary flows are related to the nodal prices, the impacts of generators and loads on operation constraints and the interactive impacts between active and reactive powers can be considered. Total transmission service cost is separated into more practical line-related costs and system-wide cost, and can be flexibly distributed between generators and loads. The method is able to reconcile transmission service cost fairly and to optimize transmission system operation and development. The case study on the IEEE 30 bus test system shows that the proposed pricing method is effective in creating economic signals towards the efficient use and operation of the transmission system. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity market price forecast is a changeling yet very important task for electricity market managers and participants. Due to the complexity and uncertainties in the power grid, electricity prices are highly volatile and normally carry with spikes. which may be (ens or even hundreds of times higher than the normal price. Such electricity spikes are very difficult to be predicted. So far. most of the research on electricity price forecast is based on the normal range electricity prices. This paper proposes a data mining based electricity price forecast framework, which can predict the normal price as well as the price spikes. The normal price can be, predicted by a previously proposed wavelet and neural network based forecast model, while the spikes are forecasted based on a data mining approach. This paper focuses on the spike prediction and explores the reasons for price spikes based on the measurement of a proposed composite supply-demand balance index (SDI) and relative demand index (RDI). These indices are able to reflect the relationship among electricity demand, electricity supply and electricity reserve capacity. The proposed model is based on a mining database including market clearing price, trading hour. electricity), demand, electricity supply and reserve. Bayesian classification and similarity searching techniques are used to mine the database to find out the internal relationships between electricity price spikes and these proposed. The mining results are used to form the price spike forecast model. This proposed model is able to generate forecasted price spike, level of spike and associated forecast confidence level. The model is tested with the Queensland electricity market data with promising results. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent deregulation in electricity markets worldwide has heightened the importance of risk management in energy markets. Assessing Value-at-Risk (VaR) in electricity markets is arguably more difficult than in traditional financial markets because the distinctive features of the former result in a highly unusual distribution of returns-electricity returns are highly volatile, display seasonalities in both their mean and volatility, exhibit leverage effects and clustering in volatility, and feature extreme levels of skewness and kurtosis. With electricity applications in mind, this paper proposes a model that accommodates autoregression and weekly seasonals in both the conditional mean and conditional volatility of returns, as well as leverage effects via an EGARCH specification. In addition, extreme value theory (EVT) is adopted to explicitly model the tails of the return distribution. Compared to a number of other parametric models and simple historical simulation based approaches, the proposed EVT-based model performs well in forecasting out-of-sample VaR. In addition, statistical tests show that the proposed model provides appropriate interval coverage in both unconditional and, more importantly, conditional contexts. Overall, the results are encouraging in suggesting that the proposed EVT-based model is a useful technique in forecasting VaR in electricity markets. (c) 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.