115 resultados para Electricity Markets Simulation
em University of Queensland eSpace - Australia
Resumo:
The recent deregulation in electricity markets worldwide has heightened the importance of risk management in energy markets. Assessing Value-at-Risk (VaR) in electricity markets is arguably more difficult than in traditional financial markets because the distinctive features of the former result in a highly unusual distribution of returns-electricity returns are highly volatile, display seasonalities in both their mean and volatility, exhibit leverage effects and clustering in volatility, and feature extreme levels of skewness and kurtosis. With electricity applications in mind, this paper proposes a model that accommodates autoregression and weekly seasonals in both the conditional mean and conditional volatility of returns, as well as leverage effects via an EGARCH specification. In addition, extreme value theory (EVT) is adopted to explicitly model the tails of the return distribution. Compared to a number of other parametric models and simple historical simulation based approaches, the proposed EVT-based model performs well in forecasting out-of-sample VaR. In addition, statistical tests show that the proposed model provides appropriate interval coverage in both unconditional and, more importantly, conditional contexts. Overall, the results are encouraging in suggesting that the proposed EVT-based model is a useful technique in forecasting VaR in electricity markets. (c) 2005 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
Resumo:
Power system real time security assessment is one of the fundamental modules of the electricity markets. Typically, when a contingency occurs, it is required that security assessment and enhancement module shall be ready for action within about 20 minutes’ time to meet the real time requirement. The recent California black out again highlighted the importance of system security. This paper proposed an approach for power system security assessment and enhancement based on the information provided from the pre-defined system parameter space. The proposed scheme opens up an efficient way for real time security assessment and enhancement in a competitive electricity market for single contingency case
Resumo:
A new methodology is proposed for the analysis of generation capacity investment in a deregulated market environment. This methodology proposes to make the investment appraisal using a probabilistic framework. The probabilistic production simulation (PPC) algorithm is used to compute the expected energy generated, taking into account system load variations and plant forced outage rates, while the Monte Carlo approach has been applied to model the electricity price variability seen in a realistic network. The model is able to capture the price and hence the profitability uncertainties for generator companies. Seasonal variation in the electricity prices and the system demand are independently modeled. The method is validated on IEEE RTS system, augmented with realistic market and plant data, by using it to compare the financial viability of several generator investments applying either conventional or directly connected generator (powerformer) technologies. The significance of the results is assessed using several financial risk measures.
Resumo:
Least-Cost Planning played a key role in the development of the energy efficiency and renewable energy industries in the USA, It has not been widely used elsewhere, largely due to differences in other nations' regulatory environments and the emergence of competitive markets as the dominant paradigm for electricity planning, Least-Cost Planning, however may over valuable insights for creating regulatory framework for competitive electricity markers. This paper examines some lessons which may be extracted from an analysis of the Least-Cost Planning experience in the USA and suggests how these lessons might prove beneficial in guiding Australia's electricity industry reform, This analysis demonstrates how market-based reforms may be flawed if they ignore the history of previous reform processes.
Resumo:
Computer simulation was used to suggest potential selection strategies for beef cattle breeders with different mixes of clients between two potential markets. The traditional market paid on the basis of carcass weight (CWT), while a new market considered marbling grade in addition to CWT as a basis for payment. Both markets instituted discounts for CWT in excess of 340 kg and light carcasses below 300 kg. Herds were simulated for each price category on the carcass weight grid for the new market. This enabled the establishment of phenotypic relationships among the traits examined [CWT, percent intramuscular fat (IMF), carcass value in the traditional market, carcass value in the new market, and the expected proportion of progeny in elite price cells in the new market pricing grid]. The appropriateness of breeding goals was assessed on the basis of client satisfaction. Satisfaction was determined by the equitable distribution of available stock between markets combined with the assessment of the utility of the animal within the market to which it was assigned. The best goal for breeders with predominantly traditional clients was a CWT in excess of 330 kg, while that for breeders with predominantly new market clients was a CWT of between 310 and 329 kg and with a marbling grade of AAA in the Ontario carcass pricing system. For breeders who wished to satisfy both new and traditional clients, the optimal CWT was 310-329 kg and the optimal marbling grade was AA-AAA. This combination resulted in satisfaction levels of greater than 75% among clients, regardless of the distribution of the clients between the traditional and new marketplaces.
Resumo:
The existence of undesirable electricity price spikes in a competitive electricity market requires an efficient auction mechanism. However, many of the existing auction mechanism have difficulties in suppressing such unreasonable price spikes effectively. A new auction mechanism is proposed to suppress effectively unreasonable price spikes in a competitive electricity market. It optimally combines system marginal price auction and pay as bid auction mechanisms. A threshold value is determined to activate the switching between the marginal price auction and the proposed composite auction. Basically when the system marginal price is higher than the threshold value, the composite auction for high price electricity market is activated. The winning electricity sellers will sell their electricity at the system marginal price or their own bid prices, depending on their rights of being paid at the system marginal price and their offers' impact on suppressing undesirable price spikes. Such economic stimuli discourage sellers from practising economic and physical withholdings. Multiple price caps are proposed to regulate strong market power. We also compare other auction mechanisms to highlight the characteristics of the proposed one. Numerical simulation using the proposed auction mechanism is given to illustrate the procedure of this new auction mechanism.
Resumo:
In this paper we utilise a stochastic address model of broadcast oligopoly markets to analyse the Australian broadcast television market. In particular, we examine the effect of the presence of a single government market participant in this market. An examination of the dynamics of the simulations demonstrates that the presence of a government market participant can simultaneously generate positive outcomes for viewers as well as for other market suppliers. Further examination of simulation dynamics indicates that privatisation of the government market participant results in reduced viewer choice and diversity. We also demonstrate that additional private market participants would not result in significant benefits to viewers.
Resumo:
Fuzzy data has grown to be an important factor in data mining. Whenever uncertainty exists, simulation can be used as a model. Simulation is very flexible, although it can involve significant levels of computation. This article discusses fuzzy decision-making using the grey related analysis method. Fuzzy models are expected to better reflect decision-making uncertainty, at some cost in accuracy relative to crisp models. Monte Carlo simulation is used to incorporate experimental levels of uncertainty into the data and to measure the impact of fuzzy decision tree models using categorical data. Results are compared with decision tree models based on crisp continuous data.
Resumo:
A long-term planning method for the electricity market is to simulate market operation into the future. Outputs from market simulation include indicators for transmission augmentation and new generation investment. A key input to market simulations is demand forecasts. For market simulation purposes, regional demand forecasts for each half-hour interval of the forecasting horizon are required, and they must accurately represent realistic demand profiles and interregional demand relationships. In this paper, a demand model is developed to accurately model these relationships. The effects of uncertainty in weather patterns and inherent correlations between regional demands on market simulation results are presented. This work signifies the advantages of probabilistic modeling of demand levels when making market-based planning decisions.
Resumo:
The deregulation of power industry worldwide has delivered the efficiency gains to the society; meanwhile, the intensity of competition has increased uncertainty and risks to market participants. Consequently, market participants are keen to hedge the market risks and maintain a competitive edge in the market; and this is a good explanation to the flourish of electricity derivative market. In this paper, the authors gave a comprehensive review of derivative contract pricing methods and proposed a new framework for energy derivative pricing to suit the needs of a deregulated electricity market
Resumo:
In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.