9 resultados para Electrical double layer
em University of Queensland eSpace - Australia
Resumo:
The leaching of elements from the surface of charged fly ash particles is known to be an unsteady process. The mass transfer resistance provided by the diffuse double layer has been quantified as one of the reasons for this delayed leaching. In this work, a model based on mass transfer principles for predicting the concentration of calcium hydroxide in the diffuse double layer is presented. The significant difference between predicted calcium hydroxide concentration and the experimentally measured is explained.
Resumo:
Ordered mesoporous materials show great importance in energy, environmental, and chemical engineering. The diffusion of guest species in mesoporous networks plays an important role in these applications, especially for energy storage, such as supercapacitors based on ordered mesoporous carbons ( OMCs). The ion diffusion behavior in two different 2-D hexagonal OMCs was investigated by using cyclic voltametry and electrochemical impedance spectroscopy. In addition, transmission electron microscopy, small-angle X-ray diffraction, and nitrogen cryosorption methods were used to study the pore structure variations of these two OMCs. It was found that, for the OMC with defective pore channels ( termed as pore packing defects), the gravimetric capacitance was greatly decayed when the voltage scan rate was increased. The experimental results suggest that, for the ion diffusion in 2-D hexagonal OMCs with similar mesopore size distribution, the pore packing defect is a dominant dynamic factor.
Resumo:
Semi-insulating InP was implanted with MeV P, As, Ga, and In ions, and the resulting evolution of structural properties with increased annealing temperature was analyzed using double crystal x-ray diffractometry and cross sectional transmission electron microscopy. The types of damage identified are correlated with scanning spreading resistance and scanning capacitance measurements, as well as with previously measured Hall effect and time resolved photoluminescence results. We have identified multiple layers of conductivity in the samples which occur due to the nonuniform damage profile of a single implant. Our structural studies have shown that the amount and type of damage caused by implantation does not scale with implant ion atomic mass. (C) 2004 American Institute of Physics.
Resumo:
A set of varying-thickness Au-films were thermally evaporated onto poly(styrene-co-acrylonitrile) thin film surfaces. The Au/PSA bi-layer targets were then implanted with 50 keV N+ ions to a fluence of 1 × 1016 ions/cm2 to promote metal-to-polymer adhesion and to enhance their mechanical and electrical performance. Electrical conductivity measurements of the implanted Au/PSA thin films showed a sharp percolation behavior versus the pre-implant Au-film thickness with a percolation threshold near the nominal thickness of 44 Å. The electrical conductivity results are discussed along with the film microstructure and the elemental diffusion/mixing within the Au/PSA interface obtained by scanning electron microscopy (SEM) and ion beam analysis techniques (RBS and ERD).