10 resultados para Electrical control drug release

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model drug release study on the ingress of water and Kokubo simulated body fluid (SBF) into poly(2-hydroxyethyl methacrylate) (THFMA) and its copolymers with tetrahydrofurfuryl methacrylate (THFMA) loaded with vitamin B-12 was undertaken over the temperature range 298-318 K. The polymers were studied as cylinders and were loaded with either 5 or 10 wt-% of the drug. The drug release from the polymers was found to follow a Fickian diffusion mechanism in the early stages of the drug release, with higher normalized release rates at higher temperatures and higher drug loadings. The normalized release rates were also found to be higher for the SBF solution than for water. The copolymer composition was found to have a significant effect on the rate of release of the drug, with the rate falling rapidly between HEMA mole fractions of 1.0 and 0.8, but for lower mole fractions of HEMA the normalized release rate decreased more slowly. This behaviour followed the trend found for the changes in the equilibrium penetrant contents for the copolymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of cyclosporine (CyA)-cyclodextrin (CD) complex incorporated within PLGA inicrospheres on microsphere characteristics, with particular emphasis on drug release kinetics. For this purpose, microspheres encapsulated with CyA and those loaded by CyA-CD complex were prepared by solvent evaporation and multiple emulsification solvent evaporation methods, respectively. Morphology, size, encapsulation efficiency and drug release pattern from microspheres were evaluated. Also, physicochemical properties of drug inside microspheres were characterized by differential scanning calorimetry (DSC) and infrared spectroscopy (IR) studies. Scanning electron microscopy (SEM) studies showed that microspheres encapsulated with CyA had islands on the microsphere surface but the islands were not seen on the surface of microspheres loaded by complex. Size range varied from 1 to 25 mu m for CyA encapsulated microspheres and 1 to 50 mu m for complex loaded microspheres. The release of CyA was biphasic with an initial more rapid release phase followed by a slower phase but drug release was twice as fast for complex loaded microspheres. IR studies did not indicate any chemical interaction between the components of microspheres and DSC thermograms revealed that CyA was present either in its amorphous state in microspheres or the presence of CyA as an inclusion complex within microspheres loaded by complex. In conclusion, using CyA as an inclusion complex with CD within microspheres can affect microsphere characteristics and drug release and it is possible to modify microsphere properties like drug release by incorporating CDs as complexing agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustained delivery of heparin to the localized adventitial surface of grafted blood vessels has been shown to prevent the vascular smooth muscle cell (VSMC) proliferation that can lead to graft occlusion and failure. In this study heparin was incorporated into electrospun poly(epsilon-caprolactone) (PCL) fiber mats for assessment as a controlled delivery device. Fibers with smooth surfaces and no bead defects could be spun from polymer solutions with 8% w/v PCL in 7:3 dichloromethane: methanol. A significant decrease in fiber diameter was observed with increasing heparin concentration. Assessment of drug loading, and imaging of fluorescently labeled heparin showed homogenous distribution of heparin throughout the fiber mats. A total of approximately half of the encapsulated heparin was released by diffusional control from the heparin/PCL fibers after 14 days. The fibers did not induce an inflammatory response in macrophage cells in vitro and the released heparin was effective in preventing the proliferation of VSMCs in culture. These results suggest that electrospun PCL fibers are a promising candidate for delivery of heparin to the site of vascular injury. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intestinal absorption of the essential trace element iron and its mobilization from storage sites in the body are controlled by systemic signals that reflect tissue iron requirements. Recent advances have indicated that the liver-derived peptide hepcidin plays a central role in this process by repressing iron release from intestinal enterocytes, macrophages and other body cells. When iron requirements are increased, hepcidin levels decline and more iron enters the plasma. It has been proposed that the level of circulating diferric transferrin, which reflects tissue iron levels, acts as a signal to alter hepcidin expression. In the liver, the proteins HFE, transferrin receptor 2 and hemojuvelin may be involved in mediating this signal as disruption of each of these molecules decreases hepcidin expression. Patients carrying mutations in these molecules or in hepcidin itself develop systemic iron loading (or hemochromatosis) due to their inability to down regulate iron absorption. Hepcidin is also responsible for the decreased plasma iron or hypoferremia that accompanies inflammation and various chronic diseases as its expression is stimulated by pro-inflammatory cytokines such as interleukin 6. The mechanisms underlying the regulation of hepcidin expression and how it acts on cells to control iron release are key areas of ongoing research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined relations between stress and coping predictors and distress and positive outcomes in multiple sclerosis (MS). A total of 502 people with MS completed a questionnaire at Time 1 and, 3 months later, Time 2 (n= 404). Predictors included Time 1 illness (duration, number of symptoms, course), number of problems, appraisal and coping (acceptance, problem solving, emotional release, avoidance, personal health control, energy conservation). Dependent variables were Time 2 distress (anxiety, depression) and positive outcomes (life satisfaction, positive affect, benefits). Results indicated that as hypothesised, personal health control, emotional release and physical assistance were related to the positive outcomes, whereas avoidance was related to distress, and acceptance was associated with the positive outcomes and distress. Findings highlight the differential relations between coping strategies and positive and negative outcomes and the role of appraisal and coping in regulating distress and promoting positive psychological states while managing a chronic illness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Morphine-6beta-D-glucuronide (M6G) is an analgesically active metabolite of morphine, accounting for approximate to10% of the morphine dose when administered by systemic routes to humans. Although M6G is more hydrophilic than morphine, it crosses the blood-brain barrier, albeit relatively slowly. For this reason, it is generally thought that, after chronic dosing, M6G contributes significantly to the analgesic effects of systemically administered morphine. Owing to its polar nature, M6G is cleared from the systemic circulation primarily via renal elimination. As M6G accumulates in patients with renal impairment, there is an increased risk of M6G-induced respiratory depression in renal failure patients who are being dosed chronically with systemic morphine. Consistent with its analgesic and respiratory depressant properties, M6G binds to the p-opioid receptor in a naloxone-reversible manner. Although the affinity of M6G for the mu-opioid receptor is similar to or slightly less than that of morphine, preclinical studies in rodents show that M6G is one to two orders of magnitude more potent than morphine when administered by central routes. This major discrepancy between the markedly higher intrinsic antinociceptive potency of M6G relative to morphine, despite their similar p-opioid receptor binding affinities, is difficult to reconcile. It has been proposed that M6G mediates its pain-relieving effects through a novel 'M6G opioid receptor', while others have argued that M6G may have higher efficacy than morphine for transduction of intracellular events. When administered by parenteral routes to rodents, M6G's antinociceptive potency is no more than twofold higher than morphine. In humans, the analgesic efficacy and respiratory depressant potency of M6G relative to morphine have been assessed in a number of short-term studies involving the intrathecal or intravenous routes of administration. For example, in hip replacement patients, intrathecal M6G provided excellent postoperative analgesia but the occurrence of late respiratory depression in 10% of these patients raised serious concern about safety. In postoperative patients, intravenous M6G administered by means of patient-controlled analgesia (PCA), or bolus plus PCA, produced no analgesia in one study and limited analgesia in another. Similarly, there was a lack of significant analgesia in healthy volunteers who received intravenous M6G for the alleviation of experimental pain (carbon dioxide applied to the nasal mucosa). In contrast, satisfactory analgesia was produced by bolus doses of intravenous M6G administered to patients with cancer pain, and to healthy volunteers with experimentally-induced ischaemic, electrical or thermal (ice water) pain. Studies to date in healthy volunteers suggest that intravenous M6G may be a less potent respiratory depressant and have a lower propensity for producing nausea and vomiting than morphine. However, it is unclear whether equi-analgesic doses of M6G and morphine were compared. Clearly, more extensive short-term trials, together with studies involving chronic M6G administration, are necessary before the potential clinical utility of M6G as an analgesic drug in its own right can be determined.