23 resultados para Ehrenfest classical quantum theorem

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study a model for a two-mode atomic-molecular Bose-Einstein condensate. Starting with a classical analysis we determine the phase space fixed points of the system. It is found that bifurcations of the fixed points naturally separate the coupling parameter space into four regions. The different regions give rise to qualitatively different dynamics. We then show that this classification holds true for the quantum dynamics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement (Schmidt number) is small for any bipartite split along an edge of the tree. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scaling of decoherence rates with qubit number N is studied for a simple model of a quantum computer in the situation where N is large. The two state qubits are localized around well-separated positions via trapping potentials and vibrational centre of mass motion of the qubits occurs. Coherent one and two qubit gating processes are controlled by external classical fields and facilitated by a cavity mode ancilla. Decoherence due to qubit coupling to a bath of spontaneous modes, cavity decay modes and to the vibrational modes is treated. A non-Markovian treatment of the short time behaviour of the fidelity is presented, and expressions for the characteristic decoherence time scales obtained for the case where the qubit/cavity mode ancilla is in a pure state and the baths are in thermal states. Specific results are given for the case where the cavity mode is in the vacuum state and gating processes are absent and the qubits are in (a) the Hadamard state (b) the GHZ state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that deterministic quantum computing with a single bit can determine whether the classical limit of a quantum system is chaotic or integrable using O(N) physical resources, where N is the dimension of the Hilbert space of the system under study. This is a square-root improvement over all known classical procedures. Our study relies strictly on the random matrix conjecture. We also present numerical results for the nonlinear kicked top.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quantum random walk on the integers exhibits pseudo memory effects, in that its probability distribution after N steps is determined by reshuffling the first N distributions that arise in a classical random walk with the same initial distribution. In a classical walk, entropy increase can be regarded as a consequence of the majorization ordering of successive distributions. The Lorenz curves of successive distributions for a symmetric quantum walk reveal no majorization ordering in general. Nevertheless, entropy can increase, and computer experiments show that it does so on average. Varying the stages at which the quantum coin system is traced out leads to new quantum walks, including a symmetric walk for which majorization ordering is valid but the spreading rate exceeds that of the usual symmetric quantum walk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cox's theorem states that, under certain assumptions, any measure of belief is isomorphic to a probability measure. This theorem, although intended as a justification of the subjectivist interpretation of probability theory, is sometimes presented as an argument for more controversial theses. Of particular interest is the thesis that the only coherent means of representing uncertainty is via the probability calculus. In this paper I examine the logical assumptions of Cox's theorem and I show how these impinge on the philosophical conclusions thought to be supported by the theorem. I show that the more controversial thesis is not supported by Cox's theorem. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide optimal measurement schemes for estimating relative parameters of the quantum state of a pair of spin systems. We prove that the optimal measurements are joint measurements on the pair of systems, meaning that they cannot be achieved by local operations and classical communication. We also demonstrate that in the limit where one of the spins becomes macroscopic, our results reproduce those that are obtained by treating that spin as a classical reference direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate quantum many-body systems where all low-energy states are entangled. As a tool for quantifying such systems, we introduce the concept of the entanglement gap, which is the difference in energy between the ground-state energy and the minimum energy that a separable (unentangled) state may attain. If the energy of the system lies within the entanglement gap, the state of the system is guaranteed to be entangled. We find Hamiltonians that have the largest possible entanglement gap; for a system consisting of two interacting spin-1/2 subsystems, the Heisenberg antiferromagnet is one such example. We also introduce a related concept, the entanglement-gap temperature: the temperature below which the thermal state is certainly entangled, as witnessed by its energy. We give an example of a bipartite Hamiltonian with an arbitrarily high entanglement-gap temperature for fixed total energy range. For bipartite spin lattices we prove a theorem demonstrating that the entanglement gap necessarily decreases as the coordination number is increased. We investigate frustrated lattices and quantum phase transitions as physical phenomena that affect the entanglement gap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How does the classical phase-space structure for a composite system relate to the entanglement characteristics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the corresponding quantum state-the ground state-achieves its maximum amount of entanglement near the critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a bifurcation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers a class of qubit channels for which three states are always sufficient to achieve the Holevo capacity. For these channels, it is known that there are cases where two orthogonal states are sufficient, two nonorthogonal states are required, or three states are necessary. Here a systematic theory is given which provides criteria to distinguish cases where two states are sufficient, and determine whether these two states should be orthogonal or nonorthogonal. In addition, we prove a theorem on the form of the optimal ensemble when three states are required, and present efficient methods of calculating the Holevo capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For quantum systems with linear dynamics in phase space much of classical feedback control theory applies. However, there are some questions that are sensible only for the quantum case: Given a fixed interaction between the system and the environment what is the optimal measurement on the environment for a particular control problem? We show that for a broad class of optimal (state- based) control problems ( the stationary linear-quadratic-Gaussian class), this question is a semidefinite program. Moreover, the answer also applies to Markovian (current-based) feedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we investigate the quantum dynamics of a model for two singlemode Bose-Einstein condensates which are coupled via Josephson tunnelling. Using direct numerical diagonalization of the Hamiltonian, we compute the time evolution of the expectation value for the relative particle number across a wide range of couplings. Our analysis shows that the system exhibits rich and complex behaviours varying between harmonic and non-harmonic oscillations, particularly around the threshold coupling between the delocalized and selftrapping phases. We show that these behaviours are dependent on both the initial state of the system and regime of the coupling. In addition, a study of the dynamics for the variance of the relative particle number expectation and the entanglement for different initial states is presented in detail.