4 resultados para Effective Temperature
em University of Queensland eSpace - Australia
Resumo:
Exposure to ethylene gas elicits flower abscission from cut stems of Geraldton waxflower (Chamelaucium uncinatum Schauer). Ethylene response rates in plants are mediated by temperature. At 20degreesC, flower abscission from waxflower 'Purple Pride' occurred upon 12 h exposure to I mu11(-1) ethylene. This ethylene treatment did not cause flower abscission at either 10 or 2degreesC. Moreover, flowers held at 2degreesC were insensitive to 48 h exposure to 1, 10 and 100 mu11(-1) ethylene. However, increasing the duration of treatment with I mu11(-1) ethylene at 10 and 2degreesC to 48 and 144 h, respectively, induced flower abscission. When flowers were held at 20degreesC in air without exogenous ethylene following continuous exposure to I mu11(-1) ethylene at 2degreesC, the duration required to elicit flower abscission was reduced from 144 to 72 It. Collectively, these responses show that maintaining harvested waxflower at low temperature (e.g. 2degreesC) is an effective means to minimise ethylene-mediated flower abscission.
Resumo:
Fly ash was modified by hydrothermal treatment using NaOH solutions under various conditions for zeolite synthesis. The XRD patterns are presented. The results indicated that the samples obtained after treatment are much different. The XRD profiles revealed a number of new reflexes, suggesting a phase transformation probably occurred. Both heat treatment and chemical treatment increased the surface area and pore volume. It was found that zeolite P would be formed at the conditions of higher NaOH concentration and temperature. The treated fly ash was tested for adsorption of heavy metal ions and dyes in aqueous solution. It was shown that fly ash and the modified forms could effectively absorb heavy metals and methylene blue but not effectively adsorb rhodamine B. Modifying fly ash with NaOH solution would significantly enhance the adsorption capacity depending on the treatment temperature, time, and base concentration. The adsorption capacity of methylene blue would increases with pH of the dye solution and the sorption capacity of FA-NaOH could reach 5 x 10(-5) mol/g. The adsorption isotherm could be described by the Langmuir and Freundlich isotherm equations. Removal of copper and nickel ions could also be achieved on those treated fly ash. The removal efficiency for copper and nickel ions could be from 30% to 90% depending on the initial concentrations. The increase in adsorption temperature will enhance the adsorption efficiency for both heavy metals. The pseudo second-order kinetics would be better for fitting the dynamic adsorption of Cu and Ni ions. (c) 2005 Elsevier B.V. All rights reserved.