4 resultados para Eea1

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early endosomal antigen I (EEAI) is known to be a marker of early endosomes and in cultured hippocampal neurons it preferentially localizes to the dendritic but not the axonal compartment. We show in cultured dorsal root ganglia and superior cervical ganglia neurons that EEAI localizes to the cell bodies and the neurites of both sensory and sympathetic neurons. We then show in vivo using a ligated rat sciatic nerve that EEAI significantly accumulates on the proximal side and not on the distal side of the ligation. This suggests that EEAI is transported in the anterograde direction in axons either as part of the homeostatic process or to the nerve ligation site in response to nerve injury. NeuroReport 12:281-284 (C) 2001 Lippincott Williams & Wilkins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sorting nexins are a large family of proteins that contain the phosphoinositide-binding Phox homology (PX) domain. A number of sorting nexins are known to bind to PtdIns(3)P, which mediates their localization to membranes of the endocytic pathway. We show here that sorting nexin 5 (SNX5) can be recruited to two distinct membrane compartments. In non-stimulated cells, the PX domain was independently targeted to endosomal structures and colocalized with full-length SNX5. The membrane binding of the PX domain was inhibited by the PI 3-kinase inhibitor, wortmannin. Although SNX5 colocalized with a fluid-phase marker and was found predominantly within a PtdIns(3)P-rich endosomal domain, very little colocalization was observed between SNX5 and the PtdIns(3)P-binding protein, EEA1. Using liposome-based binding assays, we have shown that the PX domain of SNX5 interacts not only with PtdIns(3)P but also with PtdIns(3,4)P-2. In response to EGF stimulation, either the SNX5-PX domain or full-length SNX5 was rapidly recruited to the plasma membrane. The localization of SNX1, which does not bind PtdIns(3,4)P-2, was unaffected by EGF signalling. Therefore, SNX5 is localized to a subdomain of the early endosome distinct from EEA1 and, following EGF stimulation and elevation of PtdIns(3,4)P-2, is also transiently recruited to the plasma membrane. These results indicate that SNX5 may have functions not only associated with endosomal sorting but also with the phosphoinositide-signalling pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the process of internalization of molecules from the extracellular milieu, a cell uses multiple endocytic pathways, consequently generating different endocytic vesicles. These primary endocytic vesicles are targeted to specific destinations inside the cell. Here, we show that GPI-anchored proteins are internalized by an Arf6-independent mechanism into GPI-anchored protein-enriched early endosomal compartments (GEECs). Internalized GPI-anchored proteins and the fluid phase are first visualized in GEECs that are acidic, primary endocytic structures, negative for early endosomal markers, Rab4, Rab5, and early endosome antigen (EEA)1. They subsequently acquire Rab5 and EEA1 before homotypic fusion with other GEECs, and heterotypic fusion with endosomes containing cargo from the clathrin-dependent endocytic pathway. Although, the formation of GEECs is unaffected by inhibition of Rab5 GTPase and phosphatidylinositol-3'-kinase (PI3K) activity, their fusion with sorting endosomes is dependent on both activities. Overexpression of Rab5 reverts PI3K inhibition of fusion, providing evidence that Rab5 effectors play important roles in heterotypic fusion between the dynamin-independent GEECs and clathrin- and dynamin-dependent sorting endosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report that phosphoinositol-binding sorting nexin 5 ( SNX5) associates with newly formed macropinosomes induced by EGF stimulation. We used the recruitment of GFP-SNX5 to macropinosomes to track their maturation. Initially, GFP-SNX5 is sequestered to discrete subdomains of the macropinosome; these subdomains are subsequently incorporated into highly dynamic, often branched, tubular structures. Time-lapse videomicroscopy revealed the highly dynamic extension of SNX5-labelled tubules and their departure from the macropinosome body to follow predefined paths towards the perinuclear region of the cell, before fusing with early endosomal acceptor membranes. The extension and departure of these tubular structures occurs rapidly over 5-10 minutes and is dependent upon intact microtubules. As the tubular structures depart from the macropinosome there is a reduction in the surface area and an increase in tension of the limiting membrane of the macropinosome. In addition to the recruitment of SNX5 to the macropinosome, Rab5, SNX1 and EEA1 are also recruited by newly formed macropinosomes, followed by the accumulation of Rab7. SNX5 forms heterodimers with SNX1 and this interaction is required for endosome association of SNX5. We propose that the departure of SNX5-positive tubules represents a rapid mechanism of recycling components from macropinosomes thereby promoting their maturation into Rab7-positive structures. Collectively these findings provide a detailed real-time characterisation of the maturation process of the macropinocytic endosome.