12 resultados para Econazole nitrate
em University of Queensland eSpace - Australia
Resumo:
In variable charge soils, anion retention and accumulation through adsorption at exchange sites is a competitive process. The objectives of this study in the wet tropics of far north Queensland were to investigate (i) whether the pre-existing high sulphate in variable charge soils had any impact on the retention of chloride and nitrate, derived mostly from the applied fertilizer; and (ii) whether chloride competed with nitrate during the adsorption processes. Soil cores up to 12.5 m depth were taken from seven sites, representing four soil types, in the Johnstone River Catchment. Six of these sites had been under sugarcane (Saccharum officinarum-S) cultivation for at least 50 years and one was an undisturbed rainforest. The cores were segmented at 1.0 m depth increments, and subsamples were analysed for nitrate-N, cation (CEC)- and anion-exchange capacities (AEC), pH, exchangeable cations (Ca, Mg, K, Na), soil organic C (SOC), electrical conductivity (EC), sulphate-S, and chloride. Sulphate-S load in 1-12 m depth under cropping ranged from 9.4 to 73.9 t ha(-1) (mean= 40 t ha(-1)) compared with 74.4 t ha(-1) in the rainforest. Chloride load under cropping ranged from 1.5 to 9.6 t ha(-1) (mean= 4.9 t ha(-1)) compared to 0.9 t ha(-1) in the rainforest, and the nitrate-N load from 113 to 2760 kg ha(-1) (mean = 910 kg ha(-1)) under cropping compared to 12 kg ha(-1) in the rainforest. Regardless of the soil type, the total chloride or nitrate-N input in fertilisers was 7.5 t ha(-1), during the last 50 years. Sulphate-S distribution in soil profiles decreased with depth at >2 m, whereas bulges of chloride or nitrate-N were observed at depths >2 m. This suggests that chloride or nitrate adsorption and retention increased with decreasing sulphate dominance. Abrupt decreases in equivalent fraction of sulphate (EFSO4), at depths >2 m, were accompanied by rapid increases in equivalent fraction of chloride (EFCl), followed by nitrate (EFNO3). The stepwise regression for EFCl and EFNO3 indicated that nitrate retention was reduced by the pre-existing sulphate and imported chloride, whereas only sulphate reduced chloride adsorption. The results indicate that chloride and nitrate adsorption and retention occurred, in the order chloride>nitrate, in soils containing large amounts of sulphate under approximately similar total inputs of N- and Cl-fertilisers. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Hungry cattle and sheep introduced to stockyards containing a dominant or pure growth of Dactyloctenium radulans (button grass) suffered acute nitrate-nitrite toxicity in four incidents in inland Queensland between 1993 and 2001. Deaths ranged from 16 to 44%. Methaemoglobinaemia was noted at necropsies in all incidents. An aqueous humour sample from one dead steer contained 75 mg nitrate/L and from one dead sheep contained 100 mg nitrate and 50 mg nitrite/L (normal = ca 5 mg nitrate/L). Both lush and dry button grass were toxic. The nitrate content of button grass from within the stockyards ranged from 4.0 to 12.9% as potassium nitrate equivalent in dry matter and from outside the stockyards ranged from
Resumo:
To determine the effects of nitrogen source on rates of net N transfer between plants connected by a common mycorrhizal network, we measured transfer of N supplied as (NH4NO3)-N-15-N-14 or (NH4NO3)-N-14-N-15 in three Casuarina/Eucalyptus treatments interconnected by a Pisolithus sp. The treatments were nonnodulated nonmycorrhizal/nonmycorrhizal; nonnodulated mycorrhizal/mycorrhizal; and nodulated mycorrhizal/mycorrhizal. Mycorrhization was 67% in Eucalyptus and 36% in Casuarina. N-2 fixation supplied 38% of the N in Casuarina. Biomass, N and N-15 contents were lowest in nonmycorrhizal plants and greatest in plants in the nodulated/mycorrhizal treatment. Nitrogen transfer was enhanced by mycorrhization and by nodulation, and was greater when N was supplied as (NH4+)-N-15 than (NO3-)-N-15. Nitrogen transfer rates were lowest in the nonmycorrhizal treatment for either N-15 source, and greatest in the nodulated, mycorrhizal treatment. Transfer was greater to Casuarina than to Eucalyptus and where ammonium rather than nitrate was the N source. Irrespective of N-15 source and of whether Casuarina or Eucalyptus was the N sink, net N transfer was low and was similar in both nonnodulated treatments. However, when Casuarina was the N sink in the nodulated, mycorrhizal treatment, net N transfer was much greater with (NH4+)-N-15 than with (NO3-)-N-15. High N demand by Casuarina resulted in greater net N transfer from the less N-demanding Eucalyptus. Net transfer of N from a non-N-2-fixing to an N-2-fixing plant may reflect the very high N demand of N-2-fixing species.
Resumo:
Basic aluminium sulphate and nitrate crystals were prepared by forced hydrolysis of aluminium salt solution followed by precipitation with a sulphate solution or by evaporation for the basic aluminium nitrate. X-ray Photoelectron Spectroscopy (XPS) confirms the chemical composition determined by ICP-AES in earlier work. High resolution XPS scans of the individual elements allow the identification of both the central (AlO4)-Al-IV group and the 12 aluminium octahedra in the [IVAlO4AlVI(OH)(24)(H2O)(12)] building unit by two Al 2p transitions with binding energies of 73.7 and 74.2 eV in both the basic aluminium sulphate and nitrate. Four different types of oxygen atoms were identified in the basic aluminium sulphate associated with the central AlO4, OH, H2O and SO4 groups in the crystal structure with transitions at 529.4, 530.1, 530.7 and 531.8 eV, respectively. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nitrate (NO3) accumulations (up to 1880 kg NO3-N/ha for a 12-m profile) in the soils of the Johnstone River catchment (JRC) may pose a serious environmental threat to the Great Barrier Reef lagoon if the NO3 were released. The: leaching of artificial rainwater through repacked soil columns was investigated to determine the effect of low NO3/low ionic strength inputs on the NO3 Chemistry of the JRC profiles. Repacked soil columns were used to simulate the 11.5-m profiles, and the soil solution anion and cation concentrations were monitored at 10 points throughout the soil column. As the rainwater was applied, NO3 leached down the profile, with substantial quantities exiting the columns. Anion exchange was discounted as the major mechanism of NO3 release due to the substantial net loss of anions from the system (up to 2740 kg NO3-N/ha over the experimental period). As the soils were dominated by variable charge minerals, the effect of changing pH and ionic strength on the surface charge density was investigated in relation to the release of NO3 from the exchange. It was concluded that the equilibration of the soil solution with the low ionic strength rainwater solution resulted in a lessening of both the positive and negative surface charge. Nitrate was released into the soil solution and subsequently leached due to the lessening of the positive surface charge. Loss of NO3 from the soil profile was slow, with equivalent field release times estimated to be tens of years. Although annual release rates were high in absolute terms (up to 175 kg NO3-N/ha.year), they are only slightly greater than the current loss rates from fertilised sugarcane production (up to 50 kg NO3-N/ha.year). In addition to this, the large-scale release of NO3 from the accumulations will only occur until a new equilibrium is established with the input rainwater solution.
Resumo:
The leaching of N fertilisers has led to the formation of nitrate (NO3) accumulations in deep subsoils (>5 m depth) of the Johnstone River catchment. This paper outlines the chemical mechanism by which these NO3 accumulations are formed and maintained. This was achieved via a series of column experiments designed to investigate NO3 leaching in relation to the soil charge chemistry and the competition of anions for exchange sites. The presence of variable charge minerals has led to the formation positive surface charge within these profiles. An increase in the soil solution ionic strength accompanying the fertiliser leaching front acts to increase the positive (and negative) charge density, thus providing adsorption sites for NO3. A decrease in the soil solution ionic strength occurs after the fertiliser pulse moves past a point in the profile, due to dilution with incoming rainwater. Nitrate is then released from the exchange back into the soil solution, thus buffering the decrease in the soil solution ionic strength. Since NO3 was adsorbed throughout the profile in this experiment it does not effectively explain the situation occurring in the field. Previous observations of the sulfate (SO4) profile distribution indicated that large SO4 accumulations in the upper profile may influence the NO3 distribution through competition for adsorption sites. A subsequent experiment investigating the effect of SO4 additions on NO3 leaching showed that NO3 adsorption was minimal in the upper profile. Adsorption of NO3 did occur, though only in the region of the profile where SO4 occupancy was low, i.e. in the lower profile. Therefore, the formation of the NO3 accumulations is dependent on the variable charge mineralogy, the variation of charge density with soil solution ionic strength, and the effects of SO4 competition for adsorption sites.