5 resultados para Ecological responses
em University of Queensland eSpace - Australia
Resumo:
Coral reefs, excellent climatic and environmental archives in tropical oceans, are widely distributed in the South China Sea (SCS), which is the largest enclosed marginal sea of western Pacific, covering over 20° in latitude and different climate conditions. Our recent research in the SCS focuses on coral-based high-resolution climate reconstruction and coral reef ecological responses using geochemical and U-series geochronological tools, which provide an ideal opportunity for understanding of Holocene climate processes and events. Some major research highlights are summarized below:
Resumo:
One of the key environmental concerns about shrimp farming is the discharge of waters with high levels of nutrients and suspended solids into adjacent waterways. In this paper we synthesize the results of our multidisciplinary research linking ecological processes in intensive shrimp ponds with their downstream impacts in tidal, mangrove-lined creeks. The incorporation of process measurements and bioindicators, in addition to water quality measurements, improved our understanding of the effect of shrimp farm discharges on the ecological health of the receiving water bodies. Changes in water quality parameters were an oversimplification of the ecological effects of water discharges, and use of key measures including primary production rates, phytoplankton responses to nutrients, community shifts in zooplankton and delta(15)N ratios in marine plants have the potential to provide more integrated and robust measures. Ultimately, reduction in nutrient discharges is most likely to ensure the future sustainability of the industry. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
There is a wealth of literature documenting a directional change of body size in heavily harvested populations. Most of this work concentrates on aquatic systems, but terrestrial populations are equally at risk. This paper explores the capacity of harvest refuges to counteract potential effects of size-selective harvesting on the allele frequency,of populations. We constructed a stochastic, individual-based model parameterized with data on red kangaroos. Because we do not know which part of individual growth would change in the course of natural selection, we explored the effects of two alternative models of individual growth in which alleles affect either the growth rate or the maximum size. The model results show that size-selective harvesting can result in significantly smaller kangaroos for a given age when the entire population is subject to harvesting. In contrast, in scenarios that include dispersal from harvest refuges, the initial allele frequency remains virtually unchanged.
Resumo:
Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types. (c) 2004 Elsevier Ltd. All rights reserved.