58 resultados para Echocardiography, Doppler, Color
em University of Queensland eSpace - Australia
Resumo:
The subjective interpretation of dobutamine echocardiography (DBE) makes the accuracy of this technique dependent on the experience of the observer, and also poses problems of concordance between observers. Myocardial tissue Doppler velocity (MDV) may offer a quantitative technique for identification of coronary artery disease, but it is unclear whether this parameter could improve the results of less expert readers and in segments with low interobserver concordance. The aim of this study was to find whether MDV improved the accuracy of wall motion scoring in novice readers, experienced echocardiographers, and experts in stress echocardiography, and to identify the optimal means of integrating these tissue Doppler data in 77 patients who underwent DBE and angiography. New or worsening abnormalities were identified as ischemia and abnormalities seen at rest as scarring. Segmental MDV was measured independently and previously derived cutoffs were applied to categorize segments as normal or ab normal. Five strategies were used to combine MDV and wall motion score, and the results of each reader using each strategy were compared with quantitative coronary angiography. The accuracy of wall motion scoring by novice (68 +/- 3%) and experienced echocardiographers (71 +/- 3%) was less than experts in stress echocardiography (88 +/- 3%, p < 0.001). Various strategies for integration with MDV significantly improved the accuracy of wall motion scoring by novices from 75 +/- 2% to 77 +/- 5% (p < 0.01). Among the experienced group, accuracy improved from 74 +/- 2% to 77 +/- 5% (p < 0.05), but in the experts, no improvement was seen from their baseline accuracy. Integration with MDV also improved discordance related to the basal segments. Thus, use of MDV in all segments or MDV in all segments with wall motion scoring in the apex offers an improvement in sensitivity and accuracy with minimal compromise in specificity. (C) 2001 by Excerpta Medica, Inc.
Resumo:
Background Diastolic dysfunction induced by ischemia may alter transmitral blood flow, but this reflects global ventricular function, and pseudonormalization may occur with increased preload. Tissue Doppler may assess regional diastolic function and is relatively load-independent, but limited data exist regarding its application to stress testing. We sought to examine the stress response of regional diastolic parameters to dobutomine echocardiography (DbE). Methods Sixty-three patients underwent study with DbE: 20 with low probability of coronary artery disease (CAD) and 43 with CAD who underwent angiography. A standard DbE protocol was used, and segments were categorized as ischemic, scar, or normal. Color tissue Doppler was acquired at baseline and peak stress, and waveforms in the basal and mid segments were used to measure early filling (Em), late filling (Am), and E deceleration time. Significant CAD was defined by stenoses >50% vessel diameter. Results Diastolic parameters had limited feasibility because of merging of Em and Am waves at high heart rates and limited reproducibility. Nonetheless, compared with normal segments, segments subtended with significant stenoses showed a lower Em velocity at rest (6.2 +/- 2.6 cm/s vs 4.8 +/- 2.2 cm/s, P < .0001) and peak (7.5 +/- 4.2 cm/s vs 5.1 +/- 3.6 cm/s, P < .0001), Abnormal segments also showed a shorter E deceleration time (51 +/- 27 ms vs 41 +/- 27 ms, P = .0001) at base and peak. No changes were documented in Am. The same pattern was seen with segments identified as ischemic with wall motion score. However, in the absence of ischemia, segments of patients with left ventricular hypertrophy showed a lower Em velocity, with blunted Em responses to stress. Conclusion Regional diastolic function is sensitive to ischemia. However, a number of practical limitations limit the applicability of diastolic parameters for the quantification of stress echocardiography.
Resumo:
The extent of abnormality in patients with positive do-butamine echocardiography (DE) is predictive of risk, but the wall motion score (WMS) has low concordance among observers. We sought whether quantifying the extent of abnormal wall motion using tissue Doppler (TD) could guide risk assessment in patients with abnormal DE in 576 patients with known or suspected coronary artery disease; standard DE was combined with color TD imaging at peak dose. WMS was assessed by an expert observer and studies were identified as abnormal in the presence of 2:1 segments with resting or stress-induced wall motion abnormalities. Patients with abnormal DE had peak systolic velocity measured in each segment. Tissue tracking was used to measure myocardial displacement. Follow-up for death or infarction was per-formed after. 16 +/- 12 months. Of 251 patients with abnormal DE, 22 patients died (20 from cardiac causes) and 7 had nonfatal myocardial infarctionis. The average WMS in patients with events was 1.8 +/- 0.5, compared with 1.7 +/- 0.5 in patients without events (p = NS). The average systolic velocity in patients with events was 4.9 +/- 1.7 cm/s and 6.4 +/- 6.5 cm/s in the patients without events (p <0.001). The average tissue tracking in patients with events was 4.5 +/- 1.5 mm and was significant. (5.7 +/- 3.1 mm),in those,without events (p <0.001). Thus, TD is an alternative to WMS for quantifying the total extent of abnormal left ventricular function-at DE, and appears to be superior for predicting adverse outcomes. (C) 2004 by Excerpta Medica, Inc.
Resumo:
Objective-To compare the accuracy and feasibility of harmonic power Doppler and digitally subtracted colour coded grey scale imaging for the assessment of perfusion defect severity by single photon emission computed tomography (SPECT) in an unselected group of patients. Design-Cohort study. Setting-Regional cardiothoracic unit. Patients-49 patients (mean (SD) age 61 (11) years; 27 women, 22 men) with known or suspected coronary artery disease were studied with simultaneous myocardial contrast echo (MCE) and SPECT after standard dipyridamole stress. Main outcome measures-Regional myocardial perfusion by SPECT, performed with Tc-99m tetrafosmin, scored qualitatively and also quantitated as per cent maximum activity. Results-Normal perfusion was identified by SPECT in 225 of 270 segments (83%). Contrast echo images were interpretable in 92% of patients. The proportion of normal MCE by grey scale, subtracted, and power Doppler techniques were respectively 76%, 74%, and 88% (p < 0.05) at > 80% of maximum counts, compared with 65%, 69%, and 61% at < 60% of maximum counts. For each technique, specificity was lowest in the lateral wail, although power Doppler was the least affected. Grey scale and subtraction techniques were least accurate in the septal wall, but power Doppler showed particular problems in the apex. On a per patient analysis, the sensitivity was 67%, 75%, and 83% for detection of coronary artery disease using grey scale, colour coded, and power Doppler, respectively, with a significant difference between power Doppler and grey scale only (p < 0.05). Specificity was also the highest for power Doppler, at 55%, but not significantly different from subtracted colour coded images. Conclusions-Myocardial contrast echo using harmonic power Doppler has greater accuracy than with grey scale imaging and digital subtraction. However, power Doppler appears to be less sensitive for mild perfusion defects.
Resumo:
Color Doppler ultrasound is a new method for documenting fluid leakage in the setting of video-urodynamic testing. In order to compare color Doppler ultrasound with traditional fluoroscopic imaging we performed a prospective blinded comparative clinical study. Fifty-two consecutive patients undergoing urodynamic investigations for symptoms of incontinence or prolapse were examined using fluoroscopy and translabial color Doppler ultrasound to document stress leakage. The investigators were blinded to each other's results. Both tests were performed at maximum bladder capacity and with an indwelling 5 Fr microtransducer catheter, in both the supine and the erect positions. Equivalent results for both methods were obtained in 48 out of 52 patients (Cohen's kappa = 0.82). It was therefore concluded that translabial color Doppler ultrasound imaging can reliably demonstrate leakage through the female urethra on Valsalva maneuver or coughing.
Resumo:
Although cardiac dysfunction in hereditary hemochromatosis (HHC) can be evaluated by conventional echocardiography, findings are often not specific. To test the hypothesis that the assessment of (1) conventional Doppler left ventricular filling indexes and (2) intrinsic elastic properties of the myocardium by Doppler tissue echocardiography can both enhance the accuracy of echocardiographic diagnosis of cardiac involvement in HHC, a group of 18 patients with HHC (mean age 50+/-7 years) and 22 age-matched healthy subjects were studied. The following indexes were characteristic for HHC: (1) the duration of atrial reversal measured from pulmonary venous flow (ms) was longer(118+/-20 vs 90+/-16; P
Resumo:
Background Systolic myocardial Doppler velocity accurately identifies coronary artery disease. However, these velocities may be affected by age, hemodynamic responses to stress, and left ventricular cavity size. We sought to examine the influences of these variables on myocardial velocity during dobutamine stress in patients with normal wall motion. Methods One hundred seventy-nine consecutive patients with normal dobutamine echocardiograms were studied. Color myocardial tissue Doppler data were obtained at rest and peak stress, and peak systolic myocardial velocity (PSV) was measured in all basal and midventricular segments. Velocities at rest and peak stress were compared with left ventricular diastolic and systolic volumes, blood pressure, heart rate, and age by Pearson correlation and interdecile analysis by use of analysis of variance. Results The only clinical variable correlating with velocity was age; PSV showed only mild correlation with age at rest (r(2) = 0.01, P = .001) and peak stress (r(2) = 0.02, P = .001), but the normal peak velocity was significantly different between the extremes of age (<44 years and >74 years). There was very weak correlation of PSV with systolic and diastolic blood pressure (r(2) < 0.01), heart rate (r(2) < 0.01), systemic vascular resistance (r(2) = 0.08), and left ventricular volumes (r(2) < 0.01). Conclusions Peak systolic velocity during dobutamine stress is relatively independent of hemodynamic factors and left ventricular cavity size. The extremes of age may influence peak systolic Doppler velocities. These results suggest that peak systolic velocity may be a robust quantitative measure during dobutamine echocardiography across most patient subgroups.
Resumo:
Quantification of stress echocardiography may overcome the training requirements and subjective nature of visual wall motion score (WMS) assessment, but quantitative approaches may be difficult to apply and require significant time for image processing. The integral of long-axis myocardial velocity is displacement, which may be represented as a color map over the left ventricular myocardium. This study was designed to explore the feasibility and accuracy of measuring long-axis myocardial displacement, derived from tissue Doppler, for the detection of coronary artery disease (CAD) during dobutamine stress echocardiography (DBE). One hundred thirty patients underwent standard DBE, including 30 patients at low risk of CAD, 30 patients with normal coronary angiography (both groups studied to define normal ranges of displacement), and 70 patients who underwent coronary angiography in whom the accuracy of normal ranges was tested. Regional myocardial displacement was obtained by analysis of color tissue Doppler apical images acquired at peak stress. Displacement was compared with WMS, and with the presence of CAD by angiography. The analysis time was 3.2 +/- 1.5 minutes per patient. Segmental displacement was correlated with wall motion (normal 7.4 +/- 3.2 mm, ischemia 5.8 +/- 4.2 mm, viability 4.6 +/- 3.0 mm, scar 4.5 +/- 3.5 mm, p <0.001). Reversal of normal base-apex displacement was an insensitive (19%) but specific (90%) marker of CAD. The sum of displacements within each vascular territory had a sensitivity and specificity of 89% and 79%, respectively, for prediction of significant CAD, compared with 86% and 78%, respectively, for WMS (p = NS). The displacements in the basal segments had a sensitivity and specificity of 83% and 78%, respectively (p = NS). Regional myocardial displacement during DBE is feasible and offers a fast and accurate method for the diagnosis of CAD. (C),2002 by Excerpta Medica, Inc.
Resumo:
Tissue Doppler imaging allows assessment of left ventricular dyssynchrony and resynchronization after biventricular pacing.
Resumo:
Background: False-negative interpretations of do-butamine stress echocardiography (DSE) may be associated with reduced wall stress. using measurements of contraction, we sought whether these segments were actually ischemic but unrecognized or showed normal contraction. Methods. We studied 48 patients (29 men; mean age 60 +/- 10 years) with normal regional function on the basis of standard qualitative interpretation of DSE. At coronary angiography within. 6 months of DSE, 32 were identified as having true-negative and 16 as having false-negative results of DSE. Three apical views were used to measure regional function with color Doppler tissue, integrated backscatter, and strain rate imaging. Cyclic variation of integrated backscatter was measured in 16 segments, and strain rate and peak systolic strain was calculated in 6 walls at rest and peak stress. Results. Segments with false-negative results of DSE were divided into 2 groups with and without low wall stress according to previously published cut-off values. Age, sex, left ventricular mass, left ventricular geometric pattern, and peak workload were not significantly different between patients with true and false-negative results of DSE. Importantly, no significant differences in cyclic variation and strain parameters at rest and peak stress were found among segments with true-and false-negative results of DSE with and without low wall stress. Stenosis severity had no influence on cyclic variation and strain parameters at peak stress. Conclusions: False-negative results of DSE reflect lack of ischemia rather than underinterpretation of regional left ventricular function. Quantitative markers are unlikely to increase the sensitivity of DSE.
Resumo:
Tissue Doppler (TD) assessment of dysynchrony (DYS) is established in evaluation for bi-ventricular pacing. Time to regional minimal volume by real-time 3D echo (3D) has been applied to DYS. 3D offers simultaneous assessment of all segments and may limit errors in localization of maximum delay due to off-axis images.We compared TD and 3D for assessment of DYS. 27 patients with ischaemic cardiomyopathy (aged 60±11 years, 85% male) underwent TD with generation of regional velocity curves. The interval between QRS onset and maximal systolic velocity (TTV) was measured in 6 basal and 6 mid-cavity segments. Onthe same day,3Dwas performed and data analysed offline with Q-Lab software (Philips, Andover, MA). Using 12 analogous regional time-volume curves time to minimal volume (T3D)was calculated. The standard deviation (S.D.) between segments in TTV and T3D was calculated as a measure ofDYS. In 7 patients itwas not possible to measureT3D due to poor images. In the remaining 20, LV diastolic volume, systolic volume and EF were 128±35 ml, 68±23 ml and 46±13%, respectively. Mean TTV was less than mean T3D (150±33ms versus 348±54 ms; p < 0.01). The intrapatient range was 20–210ms for TTV and 0–410ms for T3D. Of 9 patients (45%) with significantDYS (S.D. TTV > 32 ms), S.D. T3D was 69±37ms compared to 48±34ms in those without DYS (p = ns). In DYS patients there was concordance of the most delayed segment in 4 (44%) cases.Therefore, different techniques for assessing DYS are not directly comparable. Specific cut-offs for DYS are needed for each technique.