8 resultados para Echinococcus Granulosus
em University of Queensland eSpace - Australia
Resumo:
Cystic echinococcosis, caused by Echinococcus grantilosus, is highly endemic in North Africa and the Middle East. This paper examines the abundance and prevalence of infection of E. granulosus in camels in Tunisia. No cysts were found in 103 camels from Kebili, whilst 19 of 188 camels from Benguerden (10.1%) were infected. Of the cysts found 95% were considered fertile with the presence of protoscolices and 80% of protoscolices were considered viable by their ability to exclude aqueous eosin. Molecular techniques were used on cyst material from camels and this demonstrated that the study animals were infected with the G1 sheep strain of E. granulosus. Observed data were fitted to a mathematical model by maximum likelihood techniques to define the parameters and their confidence limits and the negative binomial distribution was used to define the error variance in the observed data. The infection pressure to camels was somewhat lower in comparison to sheep reported in an earlier study. However, because camels are much longer-lived animals, the results of the model fit suggested that older camels have a relatively high prevalence rate, reaching a most likely value of 32% at age 15 years. This could represent an important source of transmission to dogs and hence indirectly to man of this zonotic strain. In common with similar studies on other species, there was no evidence of parasite-induced immunity in camels. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The signal sequence trap technique was applied to identify genes coding for secreted and membrane bound proteins from Echinococcus granulosus, the etiologic agent of cystic hydatid disease. An E. granulosus protoscolex cDNA library was constructed in the AP-PST vector such that randomly primed cDNAs were fused with a placental alkaline phosphatase reporter gene lacking its endogenous signal peptide. E. granulosus cDNAs encoding a functional signal peptide were selected by their ability to rescue secretion of alkaline phosphatase by COS-7 cells that had been transfected with the cDNA library. Eighteen positive clones were identified and sequenced. Their deduced amino acid sequences showed significant similarity with amino acid transporters, Krebs cycle intermediates transporters, presenilins and vacuolar protein sorter proteins. Other cDNAs encoded secreted proteins without homologues. Three sequences were transcribed antisense to E. granulosus expressed sequence tags. All the mRNAs were expressed in protoscoleces and adult worms, but some of them were not found in oncospheres. The putative E. granulosus secreted and membrane bound proteins identified are likely to play important roles in the metabolism, development and survival in the host and represent potential targets for diagnosis, drugs and vaccines against E. granulosus. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A full-length cDNA sequence coding for Echinococcus granulosus thioredoxin peroxidase (EgTPx) was isolated from a sheep strain protoscolex cDNA library by immunoscreening using a pool of sera from mice infected with oncospheres. EgTPx expressed as a fusion protein with glutathione S-transferase (GST) exhibited significant thiol-dependent peroxidase activity that protected plasmid DNA from damage by metal-catalyzed oxidation (MCO) in vitro. Furthermore, the suggested antioxidant role for EgTPx was reinforced in an in vivo assay, whereby its expression in BL21 bacterial cells markedly increased the tolerance and survival of the cells to high concentrations of H2O2 compared with controls. Immunolocalization studies revealed that EgTPx was specifically expressed in all tissues of the protoscolex and brood capsules. Higher intensity of labelling was detected in many, but not all, calcareous corpuscle cells in protoscoleces. The purified recombinant EgTPx protein was used to screen sera from heavily infected mice and patients with confirmed hydatid infection. Only a portion of the sera reacted positively with the EgTPx-GST fusion protein in Western blots, suggesting that EgTPx may form antibody-antigen complexes or that responses to the EgTPx antigen may be immunologically regulated. Recombinant EgTPx may prove useful for the screening of specific inhibitors that could serve as new drugs for treatment of hydatid disease. Moreover, given that TPx from different parasitic phyla were phylogenetically distant from host TPx molecules, the development of antiparasite TPx inhibitors that do not react with host TPx might be feasible. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
DNA approaches are now being used routinely for accurate identification of Echinococcus and Taenia species, subspecies and strains, and in molecular epidemiological surveys of echinococcosis/taeniasis in different geographical settings and host assemblages. The publication of the complete sequences of the mitochondrial (int) genomes of E. granulosus, E. multilocularis, T solium and Asian Taenia, and the availability of mtDNA sequences for a number of other taeniid genotypes, has provided additional genetic information that can be used for more in depth phylogenetic and taxonomic studies of these parasites. This very rich sequence information has provided a solid molecular basis, along with a range of different biological, epidemiological, biochemical and other molecular-genetic criteria, for revising the taxonomy of the genus Echinococcus and for estimating the evolutionary time of divergence of the various taxa. Furthermore, the accumulating genetic data has allowed the development of PCR-based tests for unambiguous identification of Echinococcus eggs in the faeces of definitive hosts and in the environment. Molecular phylogenies derived from mtDNA sequence comparisons of geographically distributed samples of T solium provide molecular evidence for two genotypes, one being restricted to Asia, with the other occurring in Africa and America. Whether the two genetic forms of T solium differ in important phenotypic characteristics remains to be determined. As well, minor DNA sequence differences have been reported between isolates of T saginata and Asian Taenia. There has been considerable discussion over a number of years regarding the taxonomic position of Asian Taenia and whether it should be regarded as a genotype, strain, subspecies or sister species of T saginata. The available molecular genetic data do not support independent species status for Asian Taenia and T saginata. What is in agreement is that both taxa are closely related to each other but distantly related to T solium. This is important in public health terms as it predicts that cysticercosis in humans attributable to Asian Taenia does not occur, because cysticercosis is unknown in T saginata. (C) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
As exemplified by aborted calcified liver lesions commonly found in patients from endemic areas, Echinococcus multilocularis metacestodes develop only in a minority of individuals exposed to infection with the papasite. Clinical research has disclosed some aspects of the survival strategy of E. multilocularis in human hosts. Clinical observations in liver transplantation and AIDS suggest that suppression of cellular/Th1related immunity increases disease severity. Most of the studies have stressed a role for CD8+ T cells and for Interleukin-10 in the development of tolerance. A spontaneous secretion of IL-10 by the PBMC seems to be the immunological hallmark of patients with progressive forms of alveolar echinococcosis (AE). IL-10-induced inhibition of effector macrophages, but also of antigen-presenting dendritic cells, may be operating and allowing parasite growth and survival. The genetic correlates of susceptibility to infection with E. multilocularis are clearer in humans than in the mouse model. A significant link between MHC polymorphism and clinical presentation of AE has been shown, and the spontaneous secretion of IL-10 in patients with a progressive AE is higher in patients with the HLA DR3+, DQ2+ haplotype. Clustering of cases in certain families, in communities otherwise exposed to similar risk factors, also points to immuno-genetic predisposition factors that may allow the larva to escape host immunity more easily. The first stage of larval development may be crucial in producing danger signals stimulating the initial production of cytokines. Therapeutic use of Interferon alpha is an attempt to foil the survival strategy of E. multilocularis. (C) 2005 Elsevier Ireland Ltd. All rights reserved.