4 resultados para Earth pressure.
em University of Queensland eSpace - Australia
Resumo:
New high-precision niobium (Nb) and tantalum (Ta) concentration data are presented for early Archaean metabasalts, metabasaltic komatiites and their erosion products (mafic metapelites) from SW Greenland and the Acasta gneiss complex, Canada. Individual datasets consistently show sub-chondritic Nb/Ta ratios averaging 15.1+/-11.6. This finding is discussed with regard to two competing models for the solution of the Nb-deficit that characterises the accessible Earth. Firstly, we test whether Nb could have sequestered into the core due to its slightly siderophile (or chalcophile) character under very reducing conditions, as recently proposed from experimental evidence. We demonstrate that troilite inclusions of the Canyon Diablo iron meteorite have Nb and V concentrations in excess of typical chondrites but that the metal phase of the Grant, Toluca and Canyon Diablo iron meteorites do not have significant concentrations of these lithophile elements. We find that if the entire accessible Earth Nb-deficit were explained by Nb in the core, only ca. 17% of the mantle could be depleted and that by 3.7 Ga, continental crust would have already achieved ca. 50% of its present mass. Nb/Ta systematics of late Archaean metabasalts compiled from the literature would further require that by 2.5 Ga, 90% of the present mass of continental crust was already in existence. As an alternative to this explanation, we propose that the average Nb/Ta ratio (15.1+/-11.6) of Earth's oldest mafic rocks is a valid approximation for bulk silicate Earth. This would require that ca. 13% of the terrestrial Nb resided in the Ta-free core. Since the partitioning of Nb between silicate and metal melts depends largely on oxygen fugacity and pressure, this finding could mean that metal/silicate segregation did not occur at the base of a deep magma ocean or that the early mantle was slightly less reducing than generally assumed. A bulk silicate Earth Nb/Ta ratio of 15.1 allows for depletion of up to 40% of the total mantle. This could indicate that in addition to the upper mantle, a portion of the lower mantle is depleted also, or if only the upper mantle were depleted, an additional hidden high Nb/Ta reservoir must exist. Comparison of Nb/Ta systematics between early and late Archaean metabasalts supports the latter idea and indicates deeply subducted high Nb/Ta eclogite slabs could reside in the mantle transition zone or the lower mantle. Accumulation of such slabs appears to have commenced between 2.5 and 2.0 Ga. Regardless of these complexities of terrestrial Nb/Ta systematics, it is shown that the depleted mantle Nb/Th ratio is a very robust proxy for the amount of extracted continental crust, because the temporal evolution of this ratio is dominated by Th-loss to the continents and not Nb-retention in the mantle. We present a new parameterisation of the continental crust volume versus age curve that specifically explores the possibility of lithophile element loss to the core and storage of eclogite slabs in the transition zone. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The addition of 1 wt-%Sr to AE42 results in an improvement in the tensile strength of the alloy at elevated temperatures of 150 and 175degreesC and an improvement in the constant load creep properties at 175degreesC. The improved elevated temperature tensile and creep strength of the alloy can be attributed to the presence of a strontium-containing phase in the microstructure of the alloy along with an increase in the stability of the microstructure of the alloy at high temperatures. (C) 2004 W. S. Maney Son Ltd.
Resumo:
The metamorphic belt of the Western Alps was subjected to widespread extensional tectonism at the end of the Eocene (ca. 45-35 Ma). Extension was accommodated by hinterland-directed movements along gently inclined extensional shear zones, which facilitated rapid exhumation of high-pressure and ultra-high-pressure rocks. This deformation resulted in a normal metamorphic sequence. Extension in the inner parts of the Western Alps was coeval with shortening at the front of the belt (foreland-directed thrusts), which took place during decompression, and emplaced higher grade metamorphic units over lower grade metamorphic rocks, thus forming an inverse metamorphic sequence. Two mechanisms for this extensional episode are discussed: (1) collapse of an overthickened lithosphere, and (2) internal readjustments within the orogenic wedge due to subduction channel dynamics. We favour the latter mechanism because it can account for the development of the observed inverse and normal metamorphic sequences along foreland-directed thrusts and hinterland-directed detachments, respectively. This hypothesis is supported by published structural, metamorphic and geochronological data from four geological transects through the Western Alps. This study also emphasizes the importance of post-shearing deformation (e.g. horizontal buckling versus vertical flattening), which can modify the distribution of hinterland- and foreland-directed shear zones in orogenic belts. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
On a global scale basalts from mid-ocean ridges are strikingly more homogeneous than basalts from intraplate volcanism. The observed geochemical heterogeneity argues strongly for the existence of distinct reservoirs in the Earth's mantle. It is an unresolved problem of Geodynamics as to how these findings can be reconciled with large-scale convection. We review observational constraints, and investigate stirring properties of numerical models of mantle convection. Conditions in the early Earth may have supported layered convection with rapid stirring in the upper layers. Material that has been altered near the surface is transported downwards by small-scale convection. Thereby a layer of homogeneous depleted material develops above pristine mantle. As the mantle cools over Earth history, the effects leading to layering become reduced and models show the large-scale convection favoured for the Earth today. Laterally averaged, the upper mantle below the lithosphere is least affected by material that has experienced near-surface differentiation. The geochemical signature obtained during the previous episode of small-scale convection may be preserved there for the longest time. Additionally, stirring is less effective in the high viscosity layer of the central lower mantle [1, 2], supporting the survival of medium-scale heterogeneities there. These models are the first, using 3-d spherical geometry and mostly Earth-like parameters, to address the suggested change of convective style. Although the models are still far from reproducing our planet, we find that proposal might be helpful towards reconciling geochemical and geophysical constraints.