21 resultados para EYE
em University of Queensland eSpace - Australia
Resumo:
We have rated eye color on a 3-point scale (1=blue/grey, 2=hazel/green, 3=brown) in 502 twin families and carried out a 5-10 cM genome scan (400-757 markers). We analyzed eye color as a threshold trait and performed multipoint sib pair linkage analysis using variance components analysis in Mx. A lod of 19.2 was found at the marker D15S1002, less than 1 cM from OCA2, which has been previously implicated in eye color variation. We estimate that 74% of variance in eye color liability is due to this QTL and a further 18% due to polygenic effects. However, a large shoulder on this peak suggests that other loci affecting eye color may be telomeric of OCA2 and inflating the QTL estimate. No other peaks reached genome-wide significance, although lods >2 were seen on 5p and 14q and lods >1 were additionally seen on chromosomes 2, 3, 6, 7, 8, 9, 17 and 18. Most of these secondary peaks were reduced or eliminated when we repeated the scan as a two locus analysis with the 15q linkage included, although this does not necessarily exclude them as false positives. We also estimated the interaction between the 15q QTL and the other marker locus but there was only minor evidence for additive x additive epistasis. Elaborating the analysis to the full two-locus model including non-additive main effects and interactions did not strengthen the evidence for epistasis. We conclude that most variation in eye color in Europeans is due to polymorphism in OCA2 but that there may be modifiers at several other loci.
Resumo:
Several recent papers have tried to address the genetic determination of eye colour via microsatellite linkage, testing of pigmentation candidate gene polymorphisms and the genome wide analysis of SNP markers that are informative for ancestry. These studies show that the OCA2 gene on chromosome 15 is the major determinant of brown and/or blue eye colour but also indicate that other loci will be involved in the broad range of hues seen in this trait in Europeans.
Resumo:
Myopia (short-sightedness) is a visual problem associated with excessive eye growth and vitreous chamber expansion. Within the eye serotonin (5-hydroxytryptamine, 5-HT) appears to have a variety of effects, it alters retinal amacrine cell processing, increases intraocular pressure, constricts ocular blood vessels, and is also mitogenic. This study sought to determine the role of the retinal serotonin system in eye growth regulation. Myopia was produced in 7-day-old chicks using -15 D spectacle lenses (LIM) and form deprivation (FDM). The effect on LIM and FDM of daily intravitreal injections of a combination of 5-HT receptor antagonists (1, 10, 50 mu M), 5-HT2 selective antagonist (Mianserin 0.5, 20 mu M) were assessed. Counts were performed of serotonin and tyrosine hydroxylase positive neurons and the relative density used to account for areal changes due to eye growth. The effect of LIM and lens-induced hyperopia (LIH) on the numbers of 5-HT-containing amacrine cells in the retina were then determined. The combination of the 5-HT receptor antagonists inhibited LIM by approximately half (1 mu M RE: -7.12 +/- 1.0 D, AL: 0.38 +/- 0.06 mm vs. saline RE: -13.19 +/- 0.65 D, AL: 0.64 +/- 0.03 mm. RE: p < 0.01, AL: p < 0.01), whereas FDM was not affected (1 mu M RE: -8.88 +/- 1.10 D). These data suggest that serotonin has a stimulatory role in LIM, although high doses of serotonin were inhibitory (1 mu M RE: -9.30 +/- 1.34 D). 5-HT immunoreactivity was localised to a subset of amacrine cell bodies in the inner nuclear layer of the retina, and to two synaptic strata in the inner plexiform layer. LIM eyes had increased numbers of 5-HT-containing amacrine cells in the central retina (12.5%). Collectively, these results suggest that manipulations to the serotonin system can alter the eye growth process but the role of the transmitter system within this process remains unclear. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Cervical joint position error (JPE) has been used as a measure of cervical afferent input to detect disturbances in sensori-motor control as a possible contributor to a neck pain syndrome. This study aimed to investigate the relationship between cervical JPE, balance and eye movement control. It was of particular interest whether assessment of cervical ME alone was sufficient to signal the presence of disturbances in the two other tests. One hundred subjects with persistent whiplash-associated disorders (WADs) and 40 healthy controls subjects were assessed on measures of cervical JPE, standing balance and the smooth pursuit neck torsion test (SPNT). The results indicated that over all subjects, significant but weak-to-moderate correlations existed between all comfortable stance balance tests and both the SPNT and rotation cervical ME tests. A weak correlation was found between the SPNT and right rotation cervical JPE. An abnormal rotation cervical JPE score had a high positive prediction value (88%) but low sensitivity (60%) and specificity (54%) to determine abnormality in balance and or SPNT test. The results suggest that in patients with persistent WAD, it is not sufficient to measure ME alone. All three measures are required to identify disturbances in the postural control system. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Comparative studies of autonomic and somatic reflexes, such as cardiac defense and motor startle, are rare. However, examination of the pattern of covariation, independence, or interference among physiological reflexes may help to clarify their functional significance and elucidate their complex modulation by psychological factors. Here we report the results of a study that examined the pattern of interference of eye-blink startle on subsequent cardiac defense. Participants were 63 students (31 women) distributed into three groups according to the sensory modality of the eliciting stimulus during the startle trials: acoustic high intensity (105 dB), acoustic low intensity (65 dB), and visual modality. Startle trials consisted of 12 presentations of the eliciting stimulus with a duration of 50 ms, instantaneous risetime, and a variable inter-stimulus interval of 16 – 20 s.Defense trials began 20 s after the last startle trial and consisted, for all groups, of 3 presentations of the high intensity acoustic stimulus with a duration of 500 ms and an inter-stimulus interval of 215 s. Results showed a clear interference of the startle trials on the subsequent defense trials when both types of trials shared identical sensory modality (acoustic) independently of intensity: the expected pattern of cardiac defense in the first trial only appeared in the visual modality. Similar interference effects were observed in the skin conductance response. Subjective reactivity to the defense stimulus did not detect differences between conditions.
Resumo:
The aim of the study was to perform a genetic linkage analysis for eye color, for comparative data. Similarity in eye color of mono- and dizygotic twins was rated by the twins' mother, their father and/or the twins themselves. For 4748 twin pairs the similarity in eye color was available on a three point scale (not at all alike-somewhat alike-completely alike), absolute eye color on individuals was not assessed. The probability that twins were alike for eye color was calculated as a weighted average of the different responses of all respondents on several different time points. The mean probability of being alike for eye color was 0.98 for MZ twins (2167 pairs), whereas the mean probability for DZ twins was 0.46 (2537 pairs), suggesting very high heritability for eye color. For 294 DZ twin pairs genome-wide marker data were available. The probability of being alike for eye color was regressed on the average amount of IBD sharing. We found a peak LOD-score of 2.9 at chromosome 15q, overlapping with the region recently implicated for absolute ratings of eye color in Australian twins [Zhu, G., Evans, D. M., Duffy, D. L., Montgomery, G. W., Medland, S. E., Gillespie, N. A., Ewen, K. R., Jewell, M., Liew, Y. W., Hayward, N. K., Sturm, R. A., Trent, J. M., and Martin, N. G. (2004). Twin Res. 7:197-210] and containing the OCA2 gene, which is the major candidate gene for eye color [Sturm, R. A. Teasdale, R. D, and Box, N. F. (2001). Gene 277:49-62]. Our results demonstrate that comparative measures on relatives can be used in genetic linkage analysis.
Resumo:
Purpose A teaching model for trabeculectomy is described using pig eyes prepared in formalin. Method The model enables trainee surgeons to practice various aspects of tissue handling required for successful trabeculectomy including the construction of a fornix-based conjunctival flap, scleral flap with buried releasable sutures, and water-tight conjunctival closure. Results Exposure to the necessary skills required to perform trabeculectomy surgery can be improved by the use of wet laboratory practice. Conclusions Trabeculectomy surgery experience is becoming more limited as fewer procedures are being performed due to the efficacy of recent medications. Wet laboratories will become an increasingly important aspect of a comprehensive ophthalmology training programme.
Resumo:
High-fidelity eye tracking is combined with a perceptual grouping task to provide insight into the likely mechanisms underlying the compensation of retinal image motion caused by movement of the eyes. The experiments describe the covert detection of minute temporal and spatial offsets incorporated into a test stimulus. Analysis of eye motion on individual trials indicates that the temporal offset sensitivity is actually due to motion of the eye inducing artificial spatial offsets in the briefly presented stimuli. The results have strong implications for two popular models of compensation for fixational eye movements, namely efference copy and image-based models. If an efference copy model is assumed, the results place constraints on the spatial accuracy and source of compensation. If an image-based model is assumed then limitations are placed on the integration time window over which motion estimates are calculated. (c) 2006 Elsevier Ltd. All rights reserved.