27 resultados para EVENT-RELATED FMRI
em University of Queensland eSpace - Australia
Resumo:
Semantic priming occurs when a subject is faster in recognising a target word when it is preceded by a related word compared to an unrelated word. The effect is attributed to automatic or controlled processing mechanisms elicited by short or long interstimulus intervals (ISIs) between primes and targets. We employed event-related functional magnetic resonance imaging (fMRI) to investigate blood oxygen level dependent (BOLD) responses associated with automatic semantic priming using an experimental design identical to that used in standard behavioural priming tasks. Prime-target semantic strength was manipulated by using lexical ambiguity primes (e.g., bank) and target words related to dominant or subordinate meaning of the ambiguity. Subjects made speeded lexical decisions (word/nonword) on dominant related, subordinate related, and unrelated word pairs presented randomly with a short ISI. The major finding was a pattern of reduced activity in middle temporal and inferior prefrontal regions for dominant versus unrelated and subordinate versus unrelated comparisons, respectively. These findings are consistent with both a dual process model of semantic priming and recent repetition priming data that suggest that reductions in BOLD responses represent neural priming associated with automatic semantic activation and implicate the left middle temporal cortex and inferior prefrontal cortex in more automatic aspects of semantic processing.
Resumo:
Previous studies have reported that patients with schizophrenia demonstrate impaired performance during working memory (WM) tasks. The current study aimed to determine whether WM impairments in schizophrenia are accompanied by reduced slow wave (SW) activity during on-line maintenance of mnemonic information. Event-related potentials were obtained from patients with schizophrenia and well controls as they performed a visuospatial delayed response task. On 50% of trials, a distractor stimulus was introduced during the delay. Compared with controls, patients with schizophrenia produced less SW memory negativity, particularly over the right hemisphere, together with reduced frontal enhancement of SW memory negativity in response to distraction. The results indicate that patients with schizophrenia generate less maintenance phase neuronal activity during WM performance, especially under conditions of distraction.
Resumo:
The efficiency of inhibitory control processes has been proposed as a mechanism constraining working-memory capacity. In order to investigate genetic influences on processes that may reflect interference control, event-related potential (ER-P) activity recorded at frontal sites, during distracting and nondistracting conditions of a working-memory task, in a sample of 509 twin pairs was examined. The ERP component of interest was the slow wave (SW). Considerable overlap in source of genetic influence was found, with a common genetic factor accounting for 37 - 45% of SW variance irrespective of condition. However, 3 - 8 % of SW variance in the distracting condition was influenced by an independent genetic source. These results suggest that neural responses to irrelevant and distracting information, that may disrupt working-memory performance, differ in a fundamental way from perceptual and memory-based processing in a working-memory task. Furthermore, the results are consistent with the view that cognition is a complex genetic trait influenced by numerous genes of small influence.
Resumo:
Working memory is an essential component of wide-ranging cognitive functions. It is a complex genetic trait probably influenced by numerous genes that individually have only a small influence. These genes may have an amplified influence on phenotypes closer to the gene action. In this study, event-related potential (ERP) phenotypes recorded during a working-memory task were collected from 656 adolescents from 299 families for whom genotypes were available. Univariate linkage analyses using the MERLIN variance-components method were conducted on slow wave phenotypes recorded at multiple sites while participants were required to remember the location of a target. Suggestive linkage (LOD > 2.2) was found on chromosomes 4, 5, 6, 10, 17, and 20. After correcting for multiple testing, suggestive linkage remained on chromosome 10. Empirical thresholds were computed for the most promising phenotypes. Those on chromosome 10 remained suggestive. A number of genes reported to regulate neural differentiation and function (i.e. NRP1, ANK3, and CHAT) were found under these linkage peaks and may influence the levels of neural activity occurring in individuals participating in a spatial working-memory task.
Resumo:
Cognitive scientists were not quick to embrace the functional neuroimaging technologies that emerged during the late 20th century. In this new century, cognitive scientists continue to question, not unreasonably, the relevance of functional neuroimaging investigations that fail to address questions of interest to cognitive science. However, some ultra-cognitive scientists assert that these experiments can never be of relevance to the Study of cognition. Their reasoning reflects an adherence to a functionalist philosophy that arbitrarily and purposefully distinguishes mental information-processing systems from brain or brain-like operations. This article addresses whether data from properly conducted functional neuroimaging studies can inform and Subsequently constrain the assumptions of theoretical cognitive models. The article commences with a focus upon the functionalist philosophy espoused by the ultra-cognitive scientists, contrasting it with the materialist philosophy that motivates both cognitive neuromiaging investigations and connectionist modelling of cognitive systems. Connectionism and cognitive neuroimaging share many features, including an emphasis on unified cognitive and neural models of systems that combine localist and distributed representations. The utility of designing cognitive neuroimaging studies to test (primarily) connectionist models of cognitive phenomena is illustrated using data from functional magnetic resonance imaging (fMRI) investigations of language production and episodic memory. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Classic identity negative priming (NP) refers to the finding that when an object is ignored, subsequent naming responses to it are slower than when it has not been previously ignored (Tipper, S.P., 1985. The negative priming effect: inhibitory priming by ignored objects. Q. J. Exp. Psychol. 37A, 571-590). It is unclear whether this phenomenon arises due to the involvement of abstract semantic representations that the ignored object accesses automatically. Contemporary connectionist models propose a key role for the anterior temporal cortex in the representation of abstract semantic knowledge (e.g., McClelland, J.L., Rogers, T.T., 2003. The parallel distributed processing approach to semantic cognition. Nat. Rev. Neurosci. 4, 310-322), suggesting that this region should be involved during performance of the classic identity NP task if it involves semantic access. Using high-field (4 T) event-related functional magnetic resonance imaging, we observed increased BOLD responses in the left anterolateral temporal cortex including the temporal pole that was directly related to the magnitude of each individual's NP effect, supporting a semantic locus. Additional signal increases were observed in the supplementary eye fields (SEF) and left inferior parietal lobule (IPL). (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The present research investigated the separate and interactive effects of the minor tranquilliser, temazepam, and a low dose of alcohol on the amplitude and latency of P300 and on reaction time. Twenty-four participants completed four drug treatments in a repeated measures design. The four drug treatments, organised as a fully repeated 2 x 2 design, included a placebo condition, an alcohol only condition, a temazepam only condition, and an alcohol and temazepam combined condition. Event-related potentials were recorded from midline sites Fz, Cz, and Pz within an oddball paradigm. The results indicated that temazepam, with or without the presence of alcohol, reduced P300 amplitude. Alcohol, on the other hand, with or without the presence of temazepam, affected processing speed and stimulus evaluation as indexed by reaction time and P300 latency. At the low dose levels used in this experiment alcohol and temazepam appear not to interact, which suggests that they affect different aspects of processing in the central nervous system. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Background: The results from previous studies have indicated that a pre-attentive component of the event-related potential (ERP), the mismatch negativity (MMN), may be an objective measure of the automatic auditory processing of phonemes and words. Aims: This article reviews the relationship between the MMN data and psycholinguistic models of spoken word processing, in order to determine whether the MMN may be used to objectively pinpoint spoken word processing deficits in individuals with aphasia. Main Contribution: This article outlines the ways in which the MMN data support psycholinguistic models currently used in the clinical management of aphasic individuals. Furthermore, the cell assembly model of the neurophysiological mechanisms underlying spoken word processing is discussed in relation to the MMN and psycholinguistic models. Conclusions: The MMN data support current theoretical psycholinguistic and neurophysiological models of spoken word processing. Future MMN studies that include normal and aphasic populations will further elucidate the role that the MMN may play in the clinical management of aphasic individuals.