7 resultados para ESTERIFICATION
em University of Queensland eSpace - Australia
Resumo:
Boric acid catalyzes the selective esterification of alpha-hydroxycarboxylic acids without causing significant esterification to occur with other carboxylic acids. The procedure is simple, high-yielding, and applicable to the esterification of alpha-hydroxy carboxylates in the presence of other carboxylic acids including beta-hydroxyacids within the same molecule.
Resumo:
HepG2 cells were stably transfected with human caveolin-1 (HepG2/cav cells). Transfection resulted in expression of caveolin-1 mRNA, a high abundance of caveolin-1 protein, and the formation of caveolae on the plasma membrane. Cholesterol efflux from HepG2/cav cells was 280 and 45% higher than that from parent HepG2 cells when human plasma and human apoA-I, respectively, were used as acceptors. The difference in efflux was eliminated by treatment of cells with progesterone. There was no difference in cholesterol efflux to cyclodextrin. Cholesterol efflux from plasma membrane vesicles was similar for the two cell types. Transfection led to a 40% increase in the amount of plasma membrane cholesterol in cholesterol-rich domains ( caveolae and/or rafts) and a 67% increase in the rate of cholesterol trafficking from intracellular compartments to these domains. Cholesterol biosynthesis in HepG2/cav cells was increased by 2-fold, and cholesterol esterification was reduced by 50% compared with parent HepG2 cells. The proliferation rate of transfected cells was significantly lower than that of non-transfected cells. Transfection did not affect expression of ABCA1 or the abundance of ABCA1 protein, but decreased secretion of apoA-I. We conclude that overexpression of caveolin-1 in hepatic cells stimulates cholesterol efflux by enhancing transfer of cholesterol to cholesterol-rich domains in the plasma membrane.
Resumo:
The yeast genome encodes seven oxysterol binding protein homologs, Osh1p-Osh7p, which have been implicated in regulating intracellular lipid and vesicular transport. Here, we show that both Osh6p and Osh7p interact with Vps4p, a member of the AAA ( ATPases associated with a variety of cellular activities) family. The coiled-coil domain of Osh7p was found to interact with Vps4p in a yeast two-hybrid screen and the interaction between Osh7p and Vps4p appears to be regulated by ergosterol. Deletion of VPS4 induced a dramatic increase in the membrane-associated pools of Osh6p and Osh7p and also caused a decrease in sterol esterification, which was suppressed by overexpression of OSH7. Lastly, overexpression of the coiled-coil domain of Osh7p (Osh7pCC) resulted in a multi-vesicular body sorting defect, suggesting a dominant negative role of Osh7pCC possibly through inhibiting Vps4p function. Our data suggest that a common mechanism may exist for AAA proteins to regulate the membrane association of yeast OSBP proteins and that these two protein families may function together to control subcellular lipid transport.
Resumo:
Carotenoids, particularly astaxanthin, are the primary pigment in crustacean shell colour. Sub-adults of the western rock lobster, Panulirus cygnus, moult from a deep red colour (termed the red phase) to a much paler colour (the white phase) at sexual maturation. We observe a 2.4-fold difference in the amount of total carotenoid present in the shell extracts of reds compared to whites, as might be expected. However, analysis of the underlying epithelium shows that there is no correlation with shell colour and the amount of free (unesterified) astaxanthin-the level of free astaxanthin in reds and whites is not significantly different. Instead, we observe a correlated two-fold difference in the amount of esterified astaxanthin present in the epithelium of red versus white individuals. These data suggest a role for esterified astaxanthin in regulating shell colour formation and suggest that esterification may promote secretion and eventual incorporation of unesterified astaxanthin into the exoskeleton. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Modification of cell wall components such as cellulose, hemicellulose and pectin plays an important role in cell expansion. Cell expansion is known to be diminished by cations but it is unknown if this results from cations reacting with pectin or other cell wall components. Autolysis of cell wall material purified from bean root (Phaseolus vulgaris L.) occurred optimally at pH 5.0 and released mainly neutral sugars but very little uronic acid. Autolytic release of neutral sugars and uronic acid was decreased when cell wall material was loaded with Ca, Cu, Sr, Zn, Al or La cations. Results were also extended to a metal-pectate model system, which behaved similarly to cell walls and these cations also inhibited the enzymatic degradation by added polygalacturonase (EC 3.2.1.15). The extent of sugar release from cation-loaded cell wall material and pectate gels was related to the degree of cation saturation of the substrate, but not to the type of cation. The binding strength of the cations was assessed by their influence on the buffer capacity of the cell wall and pectate. The strongly bound cations (Cu, Al or La) resulted in higher cation saturation of the substrate and decreased enzymatic degradability than the weakly held cations (Ca, Sr and Zn). The results indicate that the junction zones between pectin molecules can peel open with weakly held cations, allowing polygalacturonase to cleave the hairy region of pectin, while strongly bound cations or high concentrations of cations force the junction zone closed, minimising enzymatic attack on the pectin backbone. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
The rhodamines are a highly fluorescent class of compound used in many different fields of research, from the lasing medium in dye lasers to biological stains and markers for cellular drug resistance. In this study, esters (2-7) of rhodamine 110 (1) were conveniently prepared via the addition of acetyl chloride to a solution of the free acid (1) in the appropriate alcohol. This method conferred several advantages over previous preparations, namely that for low boiling alcohols, simple evaporation of the solution afforded the ester in quantitative yield with no need for purification. For higher boiling point alcohols, a method has been developed which allows the separation of longer chain esters from the alcohol solvent.