12 resultados para ENVENOMATION

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The medical management of those envenomed by snakes, spiders and poisonous fish in Australia featured extensively in the writings 19th century doctors, expeditioners and anthropologists. Against the background of this introduced medical doctrine there already existed an extensive tradition of Aboriginal medical lore; techniques of heat treatment, suction, incision and the application of plant-derived pharmacological substances featured extensively in the management of envenomed victims. The application of a hair-string or grass-string ligature, suctioning of the bite-site and incision were practised in a variety of combinations. Such evolved independently of and pre-dated such practices, which were promoted extensively by immigrant European doctors in the late 19th century. Pacific scientific toxinology began in the 17th century with Don Diego de Prado y Tovar's 1606 account of ciguatera. By the end of the 19th century more than 30 papers and books had defined the natural history of Australian elapid poisoning. The medical management of snakebite in Australia was the focus of great controversy from 1860 to 1900. Dogmatic claims of the supposed antidote efficacy of intravenous ammonia by Professor G.B. Halford, and that of strychnine by Dr. Augustus Mueller, claimed mainstream medical attention. This era of potential iatrogenic disaster and dogma was brought to a conclusion by the objective experiments of Joseph Lauterer and Thomas Lane Bancroft in 1890 in Brisbane; and by those of C.J. Martin (from 1893) and Frank Tidswell (from 1898), both of Sydney. The modern era of Australian toxinology developed as a direct consequence of Calmette's discovery, in Paris in 1894, of immune serum, which was protective against snakebite. We review the key contributors and discoveries of toxinology in colonial Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although viperlike in appearance and habit, death adders belong to the Elapidae family of snakes. Systemic envenomation represents a serious medical problem with antivenom, which is raised against Acanthophis antarcticus venom, representing the primary treatment. This study focused on the major Acanthophis variants from Australia and islands in the Indo-Pacific region. Venoms were profiled using liquid chromatography-mass spectrometry, and analyzed for in vitro neurotoxicity (0.3-10 mug/ml), as well as the effectiveness of antivenom. (1-5 units/ml; 10 min prior to the addition of 10 mug/ml venom). The following death adder venoms were examined: A. antarcticus (from separate populations in New South Wales, Queensland, South Australia, and Western Australia), A. hawkei, A. praelongus, A. pyrrhus, A. rugosus, A. wellsi, and venom from an unnamed species from the Indonesian island of Seram. All venoms abolished indirect twitches of the chick isolated biventer cervicis nerve-muscle preparation in a dose-dependent manner. In addition, all venoms blocked responses to exogenous acetylcholine (1 m-M) and carbachol (20 muM), but not KCl (40 mM), suggesting postsynaptic neurotoxicity. Death adder antivenom (1 unit/ml) prevented the neurotoxic effects of A. pyrrhus, A. praelongus, and A. hawkei venoms, although it was markedly less effective against venoms from A. antarcticus (NSW, SA, WA), A. rugosus, A. wellsi, and A. sp. Scram. However, at 5 units/ml, antivenom was effective against all venoms tested. Death adder venoms, including those from A. antarcticus geographic variants, differed not only in their venom composition but also in their neurotoxic activity and susceptibility to antivenom. For the first time toxicological aspects of A. hawkei, A. wellsi, A. rugosus, and A. sp. Seram venoms were studied. (C) 2001 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australian funnel-web spiders are recognized as one of the most venomous spiders to humans world-wide. Funnel-web spider antivenom (FWS AV) reverses clinical effects of envenomation from the bite of Atrax robustus and a small number of related Hadronyche species. This study assessed the in vitro efficacy of FWS AV in neutralization of the effects of funnel-web spider venoms, collected from various locations along the eastern seaboard of Australia, in an isolated chick biventer cervicis nerve-muscle preparation. Venoms were separated by SDS-PAGE electrophoresis to compare protein composition and transblotted for Western blotting and incubation with FWS AV. SDS-PAGE of venoms revealed similar low and high molecular weight protein bands. Western blotting with FWS AV showed similar antivenom binding with protein bands in all the venoms tested. Male funnel-web spider venoms (7/7) and female venoms (5110) produced muscle contracture and fasciculation when applied to the nerve-muscle preparation. Venom effects were reversed by subsequent application of FWS AV or prevented by pretreatment of the preparation with antivenom. FWS AV appears to reverse the in vitro toxicity of a number of funnel-web spider venoms from the eastern seaboard of Australia. FWS AV should be effective in the treatment of envenomation from most, if not all, species of Australian funnel-web spiders. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

delta-Atracotoxin-Ar1a (delta-ACTX-Ar1a) is the major polypeptide neurotoxin isolated from the venom of the male Sydney funnel-web spider, Atrax robustus. This neurotoxin targets both insect and mammalian voltage-gated sodium channels, where it competes with scorpion alpha-toxins for neurotoxin receptor site-3 to slow sodium-channel inactivation. Progress in characterizing the structure and mechanism of action of this toxin has been hampered by the limited supply of pure toxin from natural sources. In this paper, we describe the first successful chemical synthesis and oxidative refolding of the four-disulfide bond containing delta-ACTX-Ar1a. This synthesis involved solid-phase Boc chemistry using double coupling, followed by oxidative folding of purified peptide using a buffer of 2 M GdnHCl and glutathione/glutathiol in a 1:1 mixture of 2-propanol (pH 8.5). Successful oxidation and refolding was confirmed using both chemical and pharmacological characterization. Ion spray mass spectrometry was employed to confirm the molecular weight. H-1 NMR analysis showed identical chemical shifts for native and synthetic toxins, indicating that the synthetic toxin adopts the native fold. Pharmacological studies employing whole-cell patch clamp recordings from rat dorsal root ganglion neurons confirmed that synthetic delta-ACTX-Ar1a produced a slowing of the sodium current inactivation and hyperpolarizing shifts in the voltage-dependence of activation and inactivation similar to native toxin. Under current clamp conditions, we show for the first time that delta-ACTX-Ar1a produces spontaneous repetitive plateau potentials underlying the clinical symptoms seen during envenomation. This successful oxidative refolding of synthetic delta-ACTX-Ar1a paves the way for future structure-activity studies to determine the toxin pharmacophore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Tiger snake antivenom, raised against Notechis scutatus venom, is indicated not only for the treatment of envenomation by this snake, but also that of the copperhead (Austrelaps superbus ) and Stephen's banded snake (Hoplocephalus stephensi ). The present study compared the neuromuscular pharmacology of venom from these snakes and the in vitro efficacy of tiger snake antivenom. 2. In chick biventer cervicis muscle and mouse phrenic nerve diaphragm preparations, all venoms (3-10 mug/mL) produced inhibition of indirect twitches. In the biventer muscle, venoms (10 mug/mL) inhibited responses to acetylcholine (1 mmol/L) and carbachol (20 mumol/L), but not KCl (40 mmol/L). The prior (10 min) administration of 1 unit/mL antivenom markedly attenuated the neurotoxic effects of A. superbus and N. scutatus venoms (10 mug/mL), but was less effective against H. stephensi venom (10 mug/mL); 5 units/mL antivenom attenuated the neurotoxic activity of all venoms. 3. Administration of 5 units/mL antivenom at t(90) partially reversed, over a period of 3 h, the inhibition of twitches produced by N. scutatus (10 mug/mL; 41% recovery), A. superbus (10 mug/mL; 25% recovery) and H. stephensi (10 mug/mL; 50% recovery) venoms. All venoms (10-100 mug/mL) also displayed signs of in vitro myotoxicity. 4. The results of the present study indicate that all three venoms contain neurotoxic activity that is effectively attenuated by tiger snake antivenom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histological investigations of the pathology of Helicoverpa armigera (Hiibner) eggs after attack by the egg parasitoid, Trichogramma australicum (Girault), indicate that the developing embryo is immediately killed by envenomation. Soon afterward the histological staining characteristics of parasitized host embryos change and the embryonic germ band dissociates into a mass of individual rounded cells. Hosts attacked by females sterilized by gamma-irradiation showed the same pathological effects as normally parasitized hosts, indicating that host degeneration is due to female venom rather than factors derived from the parasitoid embryo or larva. Cell death also occurred in older host embryos although tissue breakdown was delayed. These findings have allowed us to determine not just that the host dies but what happens to the cells and tissues, i.e., their physical appearance, the time course of their degeneration, and that the process is retarded in older hosts. These processes can possibly be emulated in artificial diets. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: To identify and demonstrate necrotizing dermatitis in infancy; an uncommon, puzzling syndrome, in which anecdotal reporting and personal experience indicates that one third of cases may require skin grafting. Much informed discussion about the pathogenesis of this distressing syndrome centres on the role of spider envenomation; and in particular on the speculative role of the Australian White-tailed spider, Lampona cylindrata. Methods: We present here six cases of necrotizing dermatitis treated surgically at the Royal Children's Hospital and Mater Children's Hospital in Brisbane over the period from 1991 to 1999. Clinical history, surgical details and pathological investigations were reviewed in each case. Microbiological investigation of necrotic ulcers included standard aerobic and anaerobic culture. Result: Nocardia and Staphylococcus were cultured in two cases, but no positive bites were witnessed and no spiders were identified by either the children or their parents. All cases were treated with silver sulphadiazine creme. Two of the infants required general anaesthesia, excision debridement and split skin grafting. The White-tailed spider, Lampona cylindrata, does not occur in Queensland, but Lampona murina does; neither species has necrotizing components in its venom. Circumstantial evidence is consistent with this syndrome being due to invertebrate envenomation, possibly following arachnid bites. Conclusion: In our experience there is insufficient evidence to impute a specific genus as the cause, at this stage of scientific knowledge. If the offending creature is a spider, we calculate that the syndrome of necrotizing dermatitis occurs in less than 1 in 5000 spider bites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. We have investigated the cardiovascular pharmacology of the crude venom extract (CVE) from the potentially lethal, very small carybdeid jellyfish Carukia barnesi, in rat, guinea-pig and human isolated tissues and anaesthetized piglets. 2. In rat and guinea-pig isolated right atria, CVE (0.1-10 mu g/mL) caused tachycardia in the presence of atropine (I mu mol/L), a response almost completely abolished by pretreatment with tetrodotoxin (TTX; 0.1 mu mol/L). In paced left atria from guinea-pig or rat, CVE (0.1-3 mu g/mL) caused a positive inotropic response in the presence of atropine (1 mu mol/L). 3. In rat mesenteric small arteries, CVE (0.1-30 mu g/mL) caused concentration-dependent contractions that were unaffected by 0.1 mu mol/L TTX, 0.3 mu mol/L prazosin or 0.1 mu mol/L co-conotoxin GVIA. 4. Neither the rat right atria tachycardic response nor the contraction of rat mesenteric arteries to CVE were affected by the presence of box jellyfish (Chironex fleckeri) antivenom (92.6 units/mL). 5. In human isolated driven right atrial trabeculae muscle strips, CVE (10 mu g/mL) tended to cause an initial fall, followed by a more sustained increase, in contractile force. In the presence of atropine (I mu mol/L), CVE only caused a positive inotropic response. In separate experiments in the, presence of propranolol (0.2 mu mol/L), the negative inotropic effect of CVE was enhanced, whereas the positive inotropic response was markedly decreased. 6. In anaesthetized piglets, CVE (67 mu g/kg, i.v.) caused sustained tachycardia and systemic and pulmonary hypertension. Venous blood samples demonstrated a marked elevation in circulating levels of noradrenaline and adrenaline. 7. We conclude that C. barnesi venom may contain a neural sodium channel activator (blocked by TTX) that, in isolated atrial tissue (and in vivo), causes the release of transmitter (and circulating) catecholamines. The venom may also contain a 'direct' vasoconstrictor component. These observations explain, at least in part, the clinical features of the potentially deadly Irukandji syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Australian terrestrial elapid snakes contain amongst the most potently toxic venoms known. However, despite the well-documented clinical effects of snake bite, little research has focussed on individual venom components at the molecular level. To further characterise the components of Australian elapid venoms, a complementary (cDNA) microarray was produced from the venom gland of the coastal taipan (Oxyuranus scutellatus) and subsequently screened for venom gland-specific transcripts. A number of putative toxin genes were identified, including neurotoxins, phospholipases, a pseudechetoxin-like gene, a venom natriuretic peptide and a nerve growth factor together with other genes involved in cellular maintenance. Venom gland-specific components also included a calglandulin-like protein implicated in the secretion of toxins from the gland into the venom. These toxin transcripts were subsequently identified in seven other related snake species, producing a detailed comparative analysis at the cDNA and protein levels. This study represents the most detailed description to date of the cloning and characterisation of different genes associated with envenomation from Australian snakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The venom from Australian elapid snakes contains a complex mixture of polypeptide toxins that adversely affect multiple homeostatic systems within their prey in a highly specific and targeted manner. Included in these toxin families are the recently described venom natriuretic peptides, which display similar structure and vasoactive functions to mammalian natriuretic peptides. This paper describes the identification and detailed comparative analysis of the cDNA transcripts coding for the mature natriuretic peptide from a total of nine Australian elapid snake species. Multiple isoforms were identified in a number of species and represent the first description of a natriuretic peptide from the venom gland for most of these snakes. Two distinct natriuretic peptide isoforms were selected from the common brown snake (Pseudonaja textilis), PtNP-a, and the mulga (Pseudechis australis), PaNP-c, for recombinant protein expression and functional analysis. Only one of these peptides, PtNP-a, displayed cGMP stimulation indicative of normal natriuretic peptide activity. Interestingly, both recombinant peptides demonstrated a dose-dependent inhibition of angiotensin converting enzyme (ACE) activity, which is predictive of the vasoactive effects of the toxin. The natriuretic peptides, however, did not possess any coagulopathic activity, nor did they inhibit or potentiate thrombin, adenosine diphosphate or arachidonic acid induced platelet aggregation. The data presented in this study represent a significant resource for understanding the role of various natriuretic peptides isoforms during the envenomation process by Australian elapid snakes. (c) 2006 Published by Elsevier Masson SAS.