52 resultados para ENDOTHELIAL PROGENITOR CELL
em University of Queensland eSpace - Australia
Resumo:
Despite the well-characterised role of sonic hedgehog (Shh) in promoting interfollicular basal cell proliferation and hair follicle downgrowth, the role of hedgehog signalling during epidermal stem cell fate remains largely uncharacterised. In order to determine whether the three vertebrate hedgehog molecules play a role in regulating epidermal renewal we overexpressed sonic (Shh), desert (Dhh) and Indian (Ihh) hedgehog in the basal cells of mouse skin under the control of the human keratin 14 promoter. We observed no overt epidermal morphogenesis phenotype in response to Ihh overexpression, however Dhh overexpression resulted in a range of embryonic and adult skin manifestations indistinguishable from Shh overexpression. Two distinct novel phenotypes were observed amongst Shh and Dhh transgenics, one exhibiting epidermal progenitor cell hyperplasia with the other displaying a complete loss of epidermal tissue renewal indicating deregulation of stem cell activity. These data suggest that correct temporal regulation of hedgehog activity is a key factor in ensuring epidermal stem cell maintenance. In addition, we observed Shh and Dhh transgenic skin from both phenotypes developed lesions reminiscent of human basal cell carcinoma (BCC), indicating that BCCs can be generated despite the loss of much of the proliferative (basal) compartment. These data suggest the intriguing possibility that BCC can arise outside the stem cell population. Thus the elucidation of Shh (and Dhh) target gene activation in the skin will likely identify those genes responsible for increasing the proliferative potential of epidermal basal cells and the mechanisms involved in regulating epidermal stem cell fate.
Resumo:
Objective. The aim of this study was to determine the function of primitive hematopoietic stem cells (PHSC) at phases G(0) and G(1) of the cell cycle. Materials and Methods. A combination of supravital dyes rhodamine123 (Rh), Hoechst33342 (Ho), and pyronin (PY) was used to isolate the G(0) and G(1) subsets of PHSC. A competitive repopulation assay was used to evaluate their in vivo function. Results. We confirmed that the Rh(lo)Lin(-)Kit(+)Sca-1(+) PHSC were relatively quiescent when compared with the more mature Rh(hi)Lin(-)Kit(+)Sca-1 HSC and Rh(hi)Lin(-)Kit(+)Sca-1(-) progenitors. In addition, cells with Rh(lo)Lin(-)Kit(+)Sca-1(+), Rh(lo)Ho(lo)Lin(-)Sca-1(+), or Rh(lo)Ho(sp)Lin(-)Sca-1(+) phenotypes identified the same cell population. We further subfractionated the Rh(lo)Ho(lo/sp)Lin(-)Sca-1(+) PHSC using PY into PYlo and PYhi subsets. Limiting dilution analysis revealed that the frequency of long-term in vivo competitive repopulating units (CRU) of the (PYRhHolo/sp)-Rh-lo-Ho-lo PHSC was 1 in 10 cells, whereas there was at least a three-fold lower frequency in those isolated at the G(1) phase (PYhi) We found a dose-dependent PY-mediated cytotoxicity that at moderate concentration affected most of the murine hematopoietic compartment but spared the early HSC compartment. Conclusion. Our data confirm that the HSC compartment is hierarchically ordered on the basis of quiescence and further extend this concept to PY-mediated cytotoxicity. PY supravital dye can be used to reveal functional heterogeneity within the (RhHolosp)-Ho-lo PHSC population but is of limited use in dissecting the relatively more mature hematopoietic stem/progenitor cell population. (C) 2001 International Society for Experimental Hematology. Published by Elsevier Science Inc.
Resumo:
Members of the GATA transcription factor gene family have been implicated in a variety of developmental processes, including that of the vertebrate central nervous system. However, the role of GATA proteins in spinal cord development remains unresolved. In this study, we investigated the expression and function of two GATA proteins, GATA2 and GATA3, in the developing chick spinal cord. We show that both proteins are expressed by a distinct subpopulation of ventral interneurons that share the same dorsoventral position as CHX10-positive V2 interneurons. However, no coexpression is observed between the two GATA proteins and CHX10. By in vivo notochord grafting and cyclopamine treatment, we demonstrate that the spatially restricted pattern of GATA3 expression is regulated, at least in part, by the signaling molecule Sonic hedgehog. In addition, we further show that Sonic hedgehog induces GATA3 expression in a dose-dependent manner. Using in ovo electroporations, we also demonstrate that GATA2 is upstream of GATA3 in the same epigenetic cascade and that GATA3 is capable of inducing GATA2 expression in vivo. Furthermore, the ectopically expressed GATA proteins can repress differentiation of other ventral cell fates, but not the development of progenitor populations identified by PAX protein expression. Taken together, our findings strongly suggest an important role for GATA2 and GATA3 proteins in the establishment of a distinct ventral interneuron subpopulation in the developing chick spinal cord. (C) 2002 Elsevier Science (USA).
Resumo:
We review investigations that have lead to a model of how the ventral spinal cord of higher vertebrate embryos is patterned during development. Central to this model is the secreted morphogen protein, Sonic hedgehog. There is now considerable evidence that this molecule acts in a concentration-dependent manner to direct the development of the spinal cord. Recent studies have suggested that two classes of homeodomain proteins are induced by threshold concentrations of Sonic hedgehog. Reciprocal inhibition between the two classes acts to convert the continuous gradient of Sonic hedgehog into defined domains of transcription factor expression. However, a number of aspects of ventral spinal cord patterning remain to be elucidated. Some issues currently under investigation involve temporal aspects of Shh-signalling, the role of other signals in ventral patterning and the characterisation of ventral interneurons. In this review, we discuss the current state of knowledge of these issues and present some preliminary studies aimed at furthering understanding of these processes in spinal cord patterning.
Resumo:
The novel mammalian gene Crim1 encodes a transmembrane bound protein with similarity to the secreted bone morphogenetic protein (BMP) antagonists, vertebrate Chordin, and its Drosophila homologue short gastrulation. Crim1 is expressed in the neural tube in mouse in a restricted pattern, but its function in central nervous system development is largely unknown. We isolated the chicken Crim1 orthologue and analyzed its expression in the developing neural tube. Chicken CRIM1 shares strong homology to human/mouse CRIM1 and C. elegans CRIM1-like proteins. Crim1 is expressed in a similar but not identical pattern to that in the developing spinal cord of mouse, including the notochord, floor plate, motor neurons, and the roof plate. Unlike follistatin, a secreted inhibitor of BMPs, in ovo electroporation of CRIM1, as a full-length transmembrane bound or secreted ectodomain was not sufficient to disrupt early patterning of the neural tube. However, ectodomain CRIM1 overexpression leads to an approximate 50% decrease in populations of specific ventral neuronal populations, including ISL-1(+) motor neurons, CHX-10(+) V1, and EN-1(+) V2 interneurons.
Resumo:
Gene translocations that repress the function of the Runx1 transcription factor play a critical role in the development of myeloid leukemia. In this report, we demonstrate that Runx1 precisely regulates c-fms (CSF-1 receptor) gene expression. Runx1 controlled expression by binding to multiple sites within the mouse c-fms gene, allowing interaction between promoter and downstream enhancer elements. The runx1 and c-fms genes showed an identical pattern of expression in mature macrophages. Runx1 expression was repressed in CSF-1 stimulated, proliferating bone marrow-derived macrophages (BMM) and significantly increased in quiescent, CSF-1 starved cells. The RAW264.7 and Mono-Mac-6, macrophage-like cell lines expressed low levels of Runx1 and both showed growth arrest and cell death with ectopic expression of Runx1. The EM-3 cell line, which represents an early myeloid progenitor cell line, showed growth arrest with Runx1 expression in the absence of any detectable changes in cell differentiation. These findings suggest that Runx1 regulates growth and survival of myeloid cells and provide a novel insight into the role of Runx family gene translocations in leukemogenesis.
Resumo:
Erythropoietin (EPO) has been used widely for the treatment of anaemia associated with chronic kidney disease and cancer chemotherapy for nearly 20 years. More recently, EPO has been found to interact with its receptor (EPO-R) expressed in a large variety of non-haematopoietic tissues to induce a range of cytoprotective cellular responses, including mitogenesis, angiogenesis, inhibition of apoptosis and promotion of vascular repair through mobilization of endothelial progenitor cells from the bone marrow. Administration of EPO or its analogue, darbepoetin, promotes impressive renoprotection in experimental ischaemic and toxic acute renal failure, as evidenced by suppressed tubular epithelial apoptosis, enhanced tubular epithelial proliferation and hastened functional recovery. This effect is still apparent when administration is delayed up to 6 h after the onset of injury and can be dissociated from its haematological effects. Based on these highly encouraging results, at least one large randomized controlled trial of EPO therapy in ischaemic acute renal failure is currently underway. Preliminary experimental and clinical evidence also indicates that EPO may be renoprotective in chronic kidney disease. The purpose of the present article is to review the renoprotective benefits of different protocols of EPO therapy in the settings of acute and chronic kidney failure and the potential mechanisms underpinning these renoprotective actions. Gaining further insight into the pleiotropic actions of EPO will hopefully eventuate in much-needed, novel therapeutic strategies for patients with kidney disease.
Resumo:
Background-Marfan syndrome (MFS), a condition caused by fibrillin-1 gene mutation is associated with aortic aneurysm that shows elastic lamellae disruption, accumulation of glycosaminoglycans, and vascular smooth muscle cell (VSMC) apoptosis with minimal inflammatory response. We examined aneurysm tissue and cultured cells for expression of transforming growth factor-beta1 to -beta3 (TGF beta 1 to 3), hyaluronan content, apoptosis, markers of cell migration, and infiltration of vascular progenitor cells (CD34). Methods and Results-MFS aortic aneurysm (6 males, 5 females; age 8 to 78 years) and normal aorta (5 males, 3 females; age 22 to 56 years) were used. Immunohistochemistry showed increased expression of TGF beta 1 to 3, hyaluronan, and CD34-positive microcapillaries in MFS aneurysm compared with control. There was increased expression of TGF beta 1 to 3 and hyaluronan in MFS cultured VSMCs, adventitial fibroblasts (AF), and skin fibroblasts (SF). Apoptosis was increased in MFS (VSMC: mean cell loss in MFS 29%, n of subjects = 5, versus control 8%, n = 3, P < 0.05; AF: 28%, n = 5 versus 7%, n = 5, P < 0.05; SF: 29%, n = 3 versus 4%, n = 3, not significant). In MFS, there was a 2-fold increase in adventitial microcapillaries containing CD34-positive cells compared with control tissue. Scratch wound assay showed absence of CD44, MT1-MMP, and beta-3 integrin at the leading edge of migration in MFS indicating altered directional migration. Western blot showed increased expression of TGF beta 1 to 3 in MFS but no change in expression of CD44, MT1-MMP, or beta-3 integrin compared with controls. Conclusions-There was overexpression of TGF-beta in MFS associated with altered hyaluronan synthesis, increased apoptosis, impaired progenitor cell recruitment, and abnormal directional migration. These factors limit tissue repair and are likely to contribute to aneurysm development.
Resumo:
Dendritic cells (DC) can be generated by culture of adherent peripheral blood (PB) cells in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). There is controversy as to whether these DC arise from proliferating precursors or simply from differentiation of monocytes. DC were generated from myeloid-enriched PB non-T cells or sorted monocytes. DC generated from either population functioned as potent antigen-presenting cells. Uptake of [H-3]-thymidine was observed in DC cultured from myeloid-enriched non-T cells. Addition of lipopolysaccharide or tumor necrosis factor-alpha led to maturation of the DC, but did not inhibit proliferation. Ki67(+) cells were observed in cytospins of these DC, and by double staining were CD3(-)CD19(-)CD11c(-)CD40(-) and myeloperoxidase(+), suggesting that they were myeloid progenitor cells. Analysis of the starting population by flow cytometry demonstrated small numbers of CD34(+)CD33(-)CD14(-) progenitor cells, and numerous granulocyte-macrophage colony-forming units were generated in standard assays. Thus, production of DC in vitro from adherent PB cells also enriches for progenitor cells that are capable of proliferation after exposure to GM-CSF. Of clinical importance, the yield of DC derived in the presence of GM-CSF and IL-4 cannot be expanded beyond the number of starting monocytes. (C) 1998 by The American Society of Hematology.
Resumo:
Injury to endothelial calls is thought to be important to the development of the vascular lesion of chronic rejection. It was the aim of this study to develop a semiquantitative method to assess endothelial injury in arterial grafts and to document the injury produced by cold storage preservation and additional warm ischaemia. Twelve- and 24-h cold preservation of rat aortic segments, together with an additional 1 h of warm ischaemia, were assessed. Electron micrographs of representative endothelial cells were scored for cytoplasmic, nuclear and mitochondrial injury. The overall injury score was obtained by addition of the individual scores. Storage for up to 24 h in University of Wisconsin (UW) and Terasaki did not produce any injury. Twenty-four hours of storage in Euro-Collins resulted in endothelial cell death. Injury occurred after 12 h of storage in Ross, Collins and normal saline, and the injury increased following 24 h of storage. One hour of warm ischaemia did not increase the injury. Injury to endothelial cells varies with the preservation solution used and the time of cold storage, so that both the type of solution and the storage time should be taken into account in clinical studies looking at the influence of cold ischaemia time and graft outcome.
Resumo:
Many serine proteases play important regulatory roles in complex biological systems, but only a few have been linked directly with capillary morphogenesis and angiogenesis. Here we provide evidence that serine protease activities, independent of the plasminogen activation cascade, are required for microvascular endothelial cell reorganization and capillary morphogenesis in vitro. A homology cloning approach targeting conserved motifs present in all serine proteases, was used to identify candidate serine proteases involved in these processes, and revealed 5 genes (acrosin, testisin, neurosin, PSP and neurotrypsin), none of which had been associated previously with expression in endothelial cells. A subsequent gene-specific RT-PCR screen for 22 serine proteases confirmed expression of these 5 genes and identified 7 additional serine protease genes expressed by human endothelial cells, urokinase-type plasminogen activator, protein C,TMPRSS2, hepsin, matriptase/ MT-SPI, dipepticlylpepticlase IV, and seprase. Differences in serine protease gene expression between microvascular and human umbilical vein endothelial cells (HUVECs) were identified and several serine protease genes were found to be regulated by the nature of the substratum, ie. artificial basement membrane or fibrillar type I collagen. mRNA transcripts of several serine protease genes were associated with blood vessels in vivo by in situ hybridization of human tissue specimens. These data suggest a potential role for serine proteases, not previously associated with endothelium, in vascular function and angiogenesis.
Resumo:
The mitogen-activated protein ( MAP) kinases contribute to altered cell growth and function in a variety of disease states. However, their role in the endothelial complications of diabetes mellitus remains unclear. Human endothelial cells were exposed for 72 h to 5 mM ( control) or 25 mM ( high) glucose or 5 mM glucose plus 20 mM mannitol ( osmotic control). The roles of p38 and p42/44 MAP kinases in the high glucose-induced growth effects were determined by assessment of phosphorylated MAP kinases and their downstream activators by Western blot and by pharmacological inhibition of these MAP kinases. Results were expressed as a percentage ( means +/- SE) of control. High glucose increased the activity of total and phosphorylated p38 MAP kinase ( P < 0.001) and p42/44 MAP kinase ( P < 0.001). Coexposure of p38 MAP kinase blocker with high glucose reversed the antiproliferative but not the hypertrophic effects associated with high-glucose conditions. Transforming growth factor (TGF)-beta1 increased the levels of phosphorylated p38 MAP kinase, and p38 MAP kinase blockade reversed the antiproliferative effects of this cytokine. The high glucose-induced increase in phosphorylated p38 MAP kinase was reversed in the presence of TGF-beta1 neutralizing antibody. Although hyperosmolarity also induced antiproliferation (P < 0.0001) and cell hypertrophy (P < 0.05), there was no change in p38 activity, and therefore inhibition of p38 MAP kinase had no influence on these growth responses. Blockade of p42/44 MAP kinase had no effect on the changes in endothelial cell growth induced by either high glucose or hyperosmolarity. High glucose increased p42/44 and p38 MAP kinase activity in human endothelial cells, but only p38 MAP kinase mediated the antiproliferative growth response through the effects of autocrine TGF-beta1. High glucose-induced endothelial cell hypertrophy was independent of activation of the MAP kinases studied. In addition, these effects were independent of any increase in osmolarity associated with high-glucose exposure.