2 resultados para ELECTRON-WAVE-GUIDE
em University of Queensland eSpace - Australia
Resumo:
The complex molybdoenzyme xanthine oxidase (XO) catalyses the oxidation of xanthine to uric acid. Here we report the first direct (unmediated) catalytic electrochemistry of the enzyme in the presence of xanthine. The only non-turnover response (without substrate present) is a sharp two-electron wave from the FAD cofactor at -242 mV vs. NHE (pH 8.0). Upon addition of xanthine to the electrochemical cell a pronounced electrocatalytic anodic current appears at ca. +300 mV vs. NHE, but the FAD peak remains. This is unusual as the onset of catalysis should occur at the potential of the FAD cofactor (the site at which oxygen or NAD+ binds to the enzyme in solution). The observed electrochemical catalysis is prevented by the addition of known XO inhibitors allopurinol or cyanide. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Boron substitution in carbon materials has been comprehensively investigated using the density functional theory method. It was found that there is a correlation between the stability of the graphene sheet, the distribution of T electrons, the electrostatic potential, and the capability for hydrogen-atom adsorption. Boron substitution destabilizes the graphene structure, increases the density of the electron wave around the substitutional boron atoms, and lowers the electrostatic potential, thus improving the hydrogen adsorption energy on carbon. However, this improvement is only ca. 10-20% instead of a factor of 4 or 5. Our calculations also show that two substitutional boron atoms provide consistent and reliable results, but one substitutional boron results in contradictory conclusions. This is a warning to other computational chemists who work on boron substitution that the conclusion from one substitutional boron might not be reliable.