74 resultados para EGG-WHITE LYSOZYME
em University of Queensland eSpace - Australia
Resumo:
The class II major histocompatibility complex molecule I-A(g7) is strongly linked to the development of spontaneous insulin-dependent diabetes mellitus (IDDM) in non obese diabetic mice and to the induction of experimental allergic encephalomyelitis in Biozzi AB/H mice. Structurally, it resembles the HLA-DQ molecules associated with human IDDM, in having a non-Asp residue at position 57 in its beta chain. To identify the requirements for peptide binding to I-A(g7) and thereby potentially pathogenic T cell epitopes, we analyzed a known I-A(g7)-restricted T cell epitope, hen egg white lysozyme (HEL) amino acids 9-27. NH2- and COOH-terminal truncations demonstrated that the minimal epitope for activation of the T cell hybridoma 2D12.1 was M12-R21 and the minimum sequence for direct binding to purified I-A(g7) M12-Y20/K13-R21. Alanine (A) scanning revealed two primary anchors for binding at relative positions (p) 6 (L) and 9 (Y) in the HEL epitope. The critical role of both anchors was demonstrated by incorporating L and Y in poly(A) backbones at the same relative positions as in the HEL epitope. Well-tolerated, weakly tolerated, and nontolerated residues were identified by analyzing the binding of peptides containing multiple substitutions at individual positions. Optimally, p6 was a large, hydrophobic residue (L, I, V, M), whereas p9 was aromatic and hydrophobic (Y or F) or positively charged (K, R). Specific residues were not tolerated at these and some other positions. A motif for binding to I-A(g7) deduced from analysis of the model HEL epitope was present in 27/30 (90%) of peptides reported to be I-A(g7)-restricted T cell epitopes or eluted from I-A(g7). Scanning a set of overlapping peptides encompassing human proinsulin revealed the motif in 6/6 good binders (sensitivity = 100%) and 4/13 weak or non-binders (specificity = 70%). This motif should facilitate identification of autoantigenic epitopes relevant to the pathogenesis and immunotherapy of IDDM.
Resumo:
A chromatographic method was developed for the determination of tryptophan content in food and feed proteins. The method involves separation and quantitation of tryptophan (released from protein by alkaline hydrolysis with NaOH) by isocratic ion-exchange chromatography with O-phthalaldehyde derivatization followed by fluorescence detection. In this procedure, chromatographic separation of the tryptophan and alpha-methyl tryptophan, the internal standard, was complete in 15 min, without any interference from other compounds. The precision of the method was 1-4%, relative standard deviation. Accuracy was validated by agreement with the value for chicken egg white lysozyme, a sequenced protein, and by quantitative recoveries after spiking with lysozyme. The method allows determination in a range of feed proteins, containing varied concentrations of tryptophan, and is applicable to systems used for routine amino acid analysis by ion-exchange chromatography. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We report here on the use of optical tweezers in the growth and manipulation of protein and inorganic crystals. Sodium chloride and hen egg-white lysozyme crystals were grown in a batch process, and then seeds from the solution were introduced into the optical tweezers. The regular and controllable shape and the known optical birefringence in these structures allowed a detailed study of the orientation effects in the beam due to both polarization and gradient forces. Additionally, we determined that the laser tweezers could be used to suspend a crystal for three-dimensional growth under varying conditions. Studies included increasing the protein concentration, thermal cycling, and a diffusion-induced increase in precipitant concentration. Preliminary studies on the use of the tweezers to create a localized seed for growth from polyethylene oxide solutions are also reported.
Resumo:
South-west elevation, as seen from street.
Resumo:
The farming of channel catfish (Ictalurus punctatus) is the largest (by volume and value) and most successful (in terms of market impact) aquaculture industry in the United States of America. Farmed channel catfish is the most consumed (in terms of volume per capita) fish fillet in the U.S. market. Within Australia, it has long been suggested by researchers and industry that silver perch (Bidyanus bidyanus) and possibly other endemic teraponid species possess similar biological attributes for aquaculture as channel catfish and may have the potential to generate a similar industry. The current teraponid industry in Australia, however, shows very little resemblance to the catfish industry, either in production style or market philosophy. A well established budget framework from the literature on U.S. channel catfish farming has been adapted for cost and climate conditions of the Burdekin region, Queensland, Australia. Breakeven prices for the hypothetical teraponid farms were found to be up to 50% higher than those published for catfish farms however were much lower than those reported for silver perch production in Australia using current, endemic styles of production. The breakeven prices for the hypothetical teraponid farms were most sensitive (in order of significance) to feed prices, production rates, interest rates, fingerling prices and electricity prices. At equivalent feed costs the costs of production between the hypothetical catfish farms in the Mississippi, U.S. and the hypothetical teraponid farms in the Burdekin, Australia were remarkably similar. The cost of feeds suitable for teraponid production in Australia are currently around double that of catfish feeds in the U.S. Issues currently hindering the development of a large scale teraponid industry in Australia are discussed.
Resumo:
The role of beta(3)- and other putative atypical beta-adrenaceptors in human white adipocytes and right atrial appendage has been investigated using CGP 12177 and novel phenylethanolamine and aryloxypropanolamine beta(3)-adrenoceptor (beta(3)AR) agonists with varying intrinsic activities and selectivities for human cloned PAR subtypes. The ability to demonstrate beta(1/2)AR antagonist-insensitive (beta(3) or other atypical beta AR-mediated) responses to CGP 12177 was critically dependent on the albumin batch used to prepare and incubate the adipocytes. Four aryloxypropanolamine selective beta(3)AR agonists (SB-226552, SB-229432, SB-236923, SB-246982) consistently elicited beta(1/2)AR antagonist-insensitive lipolysis. However, a phenylethanolamine (SB-220646) that was a selective full beta(3)AR agonist elicited full lipolytic and inotropic responses that were sensitive to beta(1/2)AR antagonism, despite it having very low efficacies at cloned beta(1)- and beta(2)ARs. A component of the response to another phenylethanolamine selective beta(3)AR agonist (SB-215691) was insensitive to beta(1/2)AR antagonism in some experiments. Because novel aryloxypropanolamine had a beta(1/2)AR antagonist-insensitive inotropic effect, these results establish more firmly that beta(3)ARs mediate lipolysis in human white adipocytes, and suggest that putative 'beta(4)ARs' mediate inotropic responses to CGP 12177. The results also illustrate the difficulty of predicting from studies on cloned beta ARs which beta ARs will mediate responses to agonists in tissues that have a high number of beta(1)- and beta(2)ARs or a low number of beta(3)ARs.
Resumo:
The amount of injury to rice caused by white stem borer Sciryophaga innotata depends on cultivar, and stage of plant and insect development, as well as insect abundance. Of the cultivars tested, IR64, IR42, Cisadane and Ketan. IR64 were the most susceptible and Ketan the least susceptible to feeding damage. Third and fourth instars consumed more stem dry matter than other stages, although yield reduction depended on the number of tillers injured. On the wider stemmed Ketan, fewer tillers were injured than the narrower IR64. Larvae are more likely to move among tillers in the third instar stage, which tends to coincide with maximum tillering and may result in more tillers injured and in yield reduction. Later instar larvae burrow downwards to the internode where they pupate. Larvae appear to move less among tillers in 'resistant' cultivars. Management strategies should target this pest at third instar and when its abundance in the field warrants control. Fewer than 10% of the neonates establish successfully on stems, and this mortality needs to be taken into account when deciding on control, as does the ability of rice plants to compensate for injury. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
We examined the effect of age-specific fecundity, mated status, and egg load on host-plant selection, by Helicoverpa armigera under laboratory conditions. The physiological state of a female moth (number of mature eggs produced) greatly influences her host-plant specificity and propensity to oviposit (oviposition motivation). Female moths were less discriminating against cowpea (a low-ranked host) relative to maize (a high-ranked host) as egg load increased. Similarly, increased egg load led to a greater propensity to oviposit on both cowpea and maize. Distribution of oviposition with age of mated females peaked shortly after mating and declined steadily thereafter until death. Most mated females (88%) carried only a single spermatophore, a few females (12%) contained two. The significance of these findings in relation to host-plant selection by H. armigera, and its management, are discussed.