3 resultados para EEG, Tilt, Zero gravity, Weightlessness, Brain hemodynamics
em University of Queensland eSpace - Australia
Resumo:
In disorders such as sleep apnea, sleep is fragmented with frequent EEG-arousal (EEGA) as determined via changes in the sleep-electroencephalogram. EEGA is a poorly understood, complicated phenomenon which is critically important in studying the mysteries of sleep. In this paper we study the information flow between the left and right hemispheres of the brain during the EEGA as manifested through inter-hemispheric asynchrony (IHA) of the surface EEG. EEG data (using electrodes A1/C4 and A2/C3 of international 10-20 system) was collected from 5 subjects undergoing routine polysomnography (PSG). Spectral correlation coefficient (R) was computed between EEG data from two hemispheres for delta-delta(0.5-4 Hz), theta-thetas(4.1-8 Hz), alpha-alpha(8.1-12 Hz) & beta-beta(12.1-25 Hz) frequency bands, during EEGA events. EEGA were graded in 3 levels as (i) micro arousals (3-6 s), (ii) short arousals (6.1-10 s), & (iii) long arousals (10.1-15 s). Our results revealed that in beta band, IHA increases above the baseline after the onset of EEGA and returns to the baseline after the conclusion of event. Results indicated that the duration of EEGA events has a direct influence on the onset of IHA. The latency (L) between the onset of arousals and IHA were found to be L=2plusmn0.5 s (for micro arousals), 4plusmn2.2 s (short arousals) and 6.5plusmn3.6 s (long arousals)
Resumo:
Background: Although there is evidence that post-mortem interval (PMI) is not a major contributor to reduced overall RNA integrity, it may differentially affect a subgroup of gene transcripts that are susceptible to PMI-related degradation. This would particularly have ramifications for microarray studies that include a broad spectrum of genes. Method: Brain tissue was removed from adult mice at 0, 6, 12, 18, 24,36 and 48 h post-mortem. RNA transcript abundance was measured by hybridising RNA from the zero time point with test RNA from each PMI time point, and differential gene expression was assessed using cDNA microarrays. Sequence and ontological analyses were performed on the group of RNA transcripts showing greater than two-fold reduction. Results: Increasing PMI was associated with decreased tissue pH and increased RNA degradation as indexed by 28S/18S ribosomal RNA ratio. Approximately 12% of mRNAs detected on the arrays displayed more than a two-fold decrease in abundance by 48 It post-mortem. An analysis of nucleotide composition provided evidence that transcripts with the AUUUA motif in the 3' untranslated region (3'UTR) were more susceptible to PMI-related RNA degradation, compared to transcripts not carrying the 3'UTR AUUUA motif. Consistent with this finding, ontological analysis showed transcription factors and elements to be over-represented in the group of transcripts susceptible to degradation. Conclusion: A subgroup of mammalian mRNA transcripts are particularly susceptible to PMI-related degradation, and as a group, they are more likely to carry the YUTR AUUUA motif. PMI should be controlled for in human and animal model post-mortem brain studies, particularly those including a broad spectrum of mRNA transcripts. (c) 2005 Elsevier B.V. All rights reserved.