2 resultados para Ductile Materials

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Finite-element simulations are used to obtain many thousands of yield points for porous materials with arbitrary void-volume fractions with spherical voids arranged in simple cubic, body-centred cubic and face-centred cubic three-dimensional arrays. Multi-axial stress states are explored. We show that the data may be fitted by a yield function which is similar to the Gurson-Tvergaard-Needleman (GTN) form, but which also depends on the determinant of the stress tensor, and all additional parameters may be expressed in terms of standard GTN-like parameters. The dependence of these parameters on the void-volume fraction is found. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plastic yield criteria for porous ductile materials are explored numerically using the finite-element technique. The cases of spherical voids arranged in simple cubic, body-centred cubic and face-centred cubic arrays are investigated with void volume fractions ranging from 2 % through to the percolation limit (over 90 %). Arbitrary triaxial macroscopic stress states and two definitions of yield are explored. The numerical data demonstrates that the yield criteria depend linearly on the determinant of the macroscopic stress tensor for the case of simple-cubic and body-centred cubic arrays - in contrast to the famous Gurson-Tvergaard-Needleman (GTN) formula - while there is no such dependence for face-centred cubic arrays within the accuracy of the finite-element discretisation. The data are well fit by a simple extension of the GTN formula which is valid for all void volume fractions, with yield-function convexity constraining the form of the extension in terms of parameters in the original formula. Simple cubic structures are more resistant to shear, while body-centred and face-centred structures are more resistant to hydrostatic pressure. The two yield surfaces corresponding to the two definitions of yield are not related by a simple scaling.