51 resultados para Drugs, Antimalarial.
em University of Queensland eSpace - Australia
Resumo:
The malarial parasite Plasmodium falciparum depends on the purine salvage enzyme hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) to convert purine bases from the host to nucleotides needed for DNA and RNA synthesis. An approach to developing antimalarial drugs is to use HGXPRT to convert introduced purine base analogs to nucleotides that are toxic to the parasite. This strategy requires that these compounds be good substrates for the parasite enzyme but poor substrates for the human counterpart, HGPRT. Bases with a chlorine atom in the 6-position or a nitrogen in the 8-position exhibited strong discrimination between P. falciparum HGXPRT and human HGPRT. The k(cat)/K-m values for the Plasmodium enzyme using 6-chloroguanine and 8-azaguanine as substrates were 50-80-fold and 336-fold higher than for the human enzyme, respectively. These and other bases were effective in inhibiting the growth of the parasite in vitro, giving IC50 values as low as 1 mu M.
Resumo:
Malaria aminopeptidases are important in the generation and regulation of free amino acids that are used in protein anabolism and for maintaining osmotic stability within the infected erythrocyte. The intraerythrocytic development of malaria parasites is blocked when the activity of aminopeptidases is specifically inhibited by reagents such as bestatin. One of the major aminopeptidases of malaria parasites is a leucyl aminopeptidase of the M17 family. We reasoned that, when this enzyme was the target of bestatin inhibition, its overexpression in malaria cells would lead to a reduced sensitivity to the inhibitor. To address this supposition, transgenic Plasmodium falciparum parasites overexpressing the leucyl aminopeptidase were generated by transfection with a plasmid that housed the full-length gene. Transgenic parasites expressed a 65-kDa protein close to the predicted molecule size of 67.831 kDa for the introduced leucyl aminopeptidase, and immunofluorescence studies localized the protein to the cytosol, the location of the native enzyme. The product of the transgene was shown to be functionally active with cytosolic extracts of transgenic parasites exhibiting twice the leucyl aminopeptidase activity compared with wildtype parasites. In vitro inhibitor sensitivity assays demonstrated that the transgenic parasites were more resistant to bestatin (EC50 64 mu M) compared with the parent parasites (EC50 25 mu M). Overexpression of genes in malaria parasites would have general application in the identification and validation of targets for antimalarial drugs.
Resumo:
The aim of this study was to develop a simple, field-practical, and effective in vitro method for determining the sensitivity of fresh erythrocytic Plasmodium vivax isolates to a range of antimalarials. The method used is a modification of the standard World Health Organization (WHO) microtest for determination of P.falciparum drug sensitivity. The WHO method was modified by removing leukocytes and using a growth medium supplemented with AB(+) serum. We successfully carried out 34 in vitro drug assays on 39 P. vivax isolates collected from the Mae Sod malaria clinic, Tak Province, Thailand. The mean percentage of parasites maturing to schizonts (six or more merozoites) in control wells was 66.5% +/- 5.9% (standard deviation). This level of growth in the control wells enabled rapid microscopic determination (5 min per isolate per drug) of the MICs of chloroquine, dihydroartemisinin, WR238605 (tafenoquine), and sulfadoxine. P. vivax was relatively sensitive to chloroquine (MIC = 160 ng/ml, 50% inhibitory concentration [IC50] = 49.8 ng/ml) and dihydroartemisinin (MIC = 0.5 ng/ml, IC50 = 0.47 ng/ml). The poor response of P. vivax to both tafenoquine (MIC = 14,000 ng/ml, IC50 = 9,739 ng/ml) and sulfadoxine (MIC = 500,000 ng/ml, IC50 = 249,000 ng/ml) was due to the slow action of these drugs and the innate resistance of P. vivax to sulfadoxine. The in vitro assay developed in our study should be useful both for assessing the antimalarial sensitivity of P. vivax populations and for screening new antimalarials in the absence of long-term P. vivax cultures.
Resumo:
We measured plasma tafenoquine concentrations in Thai soldiers given a monthly regimen of tafenoquine to determine whether these concentrations adequately suppressed malarial infections on the Thai- Cambodian border. After receiving a treatment course of artesunate and doxycycline, 104 male soldiers were administered a loading dose of tafenoquine ( 400 mg daily for 3 days), followed by tafenoquine monthly ( 400 mg every 4 weeks) for 5 months. Consecutive monthly mean ( +/- standard deviation) trough plasma tafenoquine concentrations were 223 +/- 41, 127 +/- 29, 157 +/- 51. 120 +/- 24, and 88 +/- ng/ mL. Only 1 soldier developed malaria during the study. At the time of malaria diagnosis, his plasma tafenoquine concentration was 40 ng/ mL, which was similar to 3- fold lower than the trough concentrations of the other soldiers. Although low tafenoquine concentrations appear to be uncommon, additional investigations are needed to determine the relationship between plasma tafenoquine concentrations and suppression of malaria.
Resumo:
This study investigated the relative contribution of ion-trapping, microsomal binding, and distribution of unbound drug as determinants in the hepatic retention of basic drugs in the isolated perfused rat liver. The ionophore monensin was used to abolish the vesicular proton gradient and thus allow an estimation of ion-trapping by acidic hepatic vesicles of cationic drugs. In vitro microsomal studies were used to independently estimate microsomal binding and metabolism. Hepatic vesicular ion-trapping, intrinsic elimination clearance, permeability-surface area product, and intracellular binding were derived using a physiologically based pharmacokinetic model. Modeling showed that the ion-trapping was significantly lower after monensin treatment for atenolol and propranolol, but not for antipyrine. However, no changes induced by monensin treatment were observed in intrinsic clearance, permeability, or binding for the three model drugs. Monensin did not affect binding or metabolic activity in vitro for the drugs. The observed ion-trapping was similar to theoretical values estimated using the pHs and fractional volumes of the acidic vesicles and the pK(a) values of drugs. Lipophilicity and pK(a) determined hepatic drug retention: a drug with low pK(a) and low lipophilicity (e.g., antipyrine) distributes as unbound drug, a drug with high pK(a) and low lipophilicity (e.g., atenolol) by ion-trapping, and a drug with a high pK(a) and high lipophilicity (e.g., propranolol) is retained by ion-trapping and intracellular binding. In conclusion, monensin inhibits the ion-trapping of high pK(a) basic drugs, leading to a reduction in hepatic retention but with no effect on hepatic drug extraction.
Resumo:
To compare the incidence of foetal malformations (FMs) in pregnant women with epilepsy treated with different anti-epileptic drugs (AED) and doses, and the influence of seizures, family and personal history, and environmental factors. A prospective, observational, community-based cohort study. Methods. A voluntary, Australia-wide, telephone-interview-based register prospectively enrolling three groups of pregnant women: taking AEDs for epilepsy; with epilepsy not taking AEDs; taking AEDs for a non-epileptic indication. Four hundred and fifty eligible women were enrolled over 40 months. Three hundred and ninety six pregnancies had been completed, with 7 sets of twins, for a total of 403 pregnancy outcomes. Results. 354 (87.8%) pregnancy outcomes resulted in a healthy live birth, 26 (6.5%) had a FM, 4 (1%) a death in utero, 1 (0.2%) a premature labour with stillbirth, 14 (3.5%) a spontaneous abortion and 4 lost to follow-up. The FM rate was greater in pregnancies exposed to sodium valproate (VPA) in the first trimester (116.0%) compared with those exposed to all other AEDs (16.0% vs. 2.4%, P < 0.01) or no AEDs (16.0% vs. 3.1 %, P < 0.01). The mean daily dose of VPA taken in pregnancy with FMs was significantly greater than in those without (11975 vs: 1128 mg, P < 0.01). The incidence of FM with VPA doses greater than or equal to 1100 mg was 30.2% vs. 3.2% with doses < 1100 mg (P < 0.01). Conclusions. There is a dose-effect relationship for FM and exposure to VPA during the first trimester of pregnancy, with higher doses of VPA associated with a significantly greater risk than with lower doses or with other AEDs. These results highlight the need to limit, where possible, the dose of VPA in pregnancy. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The salient feature of metals is that unlike organic compounds they do not degrade in the environment and barely move from one environmental matrix to another. Human interventions take these compounds from their stable and non-bioavailable geological matrix into situations of biological accessibility. Studies in the 1970s and the 1980s of metal bioavailability and impacts of metals and metalloids were driven by the process of abatement of lead in the environment. Humans have clear and identifiable sources of exposure from fuels, food and leaded water pipes to lead. Interventions started at that time have dramatically lowered human lead exposure. Attention has now shifted to other metals, in particular, cadmium, which has seen increasing use. It is generally accepted that food crops grown on cadmium containing soils or soils naturally rich in this metal are the major source of exposure to humans other than exposure from smoking of cigarettes. This mini-review gives a summary and commentary on early studies on effects of lead on haem metabolism that provide us the clue to why investigations of the impacts of other toxic heavy metals and metalloids such as cadmium and arsenic on different human cytochrome P450 forms have become of great interest at the current time. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
There is an urgent need to treat restenosis, a major complication of the treatment of arteries blocked by atherosclerotic plaque, using local delivery techniques. We observed that cross-linked fibrin (XLF) is deposited at the site of surgical injury of arteries. An antibody to XLF, conjugated to anti-restenotic agents, should deliver the drugs directly and only to the site of injury. An anti-XLF antibody (H93.7C.1D2/48; 1D2) was conjugated to heparin (using N-succinimidyl 3-(2-pyridyldithio)-propionate), low molecular weight heparin (LMWH) (adipic acid dihydrazide) and rapamycin (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide), and the conjugates purified and tested for activity before use in vivo. Rabbits had their right carotid arteries de-endothelialised and then given a bolus of 1D2-heparin, 1D2-LMWH or 1D2-rapamycin conjugate or controls of saline, heparin, LMWH, rapamycin or 1D2 (+/-heparin bolus) and sacrificed after 2 or 4 weeks (12 groups, n=6/group). Rabbits given any of the conjugates had minimal neointimal development in injured arteries, with up to 59% fewer neointimal cells than those given control drugs. Rabbits given 1D2-heparin or 1D2-LMWH had an increased or insignificant reduction in luminal area, with positive remodelling, while the medial and total arterial areas of rabbits given 1D2-rapamycin were not affected by injury. Arteries exposed to 1D2-heparin or 1D2-rapamycin had more endothelial cells than rabbits given control drugs. Thus, XLF-antibodies can site-deliver anti-restenotic agents to injured areas of the artery wall, where the conjugates can influence remodelling, re-endothelialisation and neointimal cell density, with reduced neointimal formation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The authors evaluated the efficacy of cholinergic drugs in the treatment of neuroleptic-induced tardive dyskinesia (TD) by a systematic review of the literature on the following agents: choline, lecithin, physostigmine, tacrine, 7-methoxyacridine, ipidacrine, galantamine, donepezil, rivastigmine, eptastigmine, metrifonate, arecoline, RS 86, xanomeline, cevimeline, deanol, and meclofenoxate. All relevant randomized controlled trials, without any language or year limitations, were obtained from the Cochrane Schizophrenia Group's Register of Trials. Trials were classified according to their methodological quality. For binary and continuous data, relative risks (RR) and weighted or standardized mean differences (SMD) were calculated, respectively. Eleven trials with a total of 261 randomized patients were included in the meta-analysis. Cholinergic drugs showed a minor trend for improvement of tardive dyskinesia symptoms, but results were not statistically significant (RR 0.84, 95% confidence interval (CI) 0.68 to 1.04, p=0.11). Despite an extensive search of the literature, eligible data for the meta-analysis were few and no results reached statistical significance. In conclusion, we found no evidence to support administration of the old cholinergic agents lecithin, deanol, and meclofenoxate to patients with tardive dyskinesia. In addition, two trials were found on novel cholinergic Alzheimer drugs in tardive dyskinesia, one of which was ongoing. Further investigation of the clinical effects of novel cholinergic agents in tardive dyskinesia is warranted. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A double-site enzyme-linked lactate dehydrogenase enzyme inummodetection assay was tested against field isolates of Plasmodium falciparum for assessing in vitro drug susceptibilities to a wide range of antimalarial drugs. Its sensitivity allowed the use of parasite densities as low as 200 parasites/mul of blood. Being a nonisotopic, colorimetric assay, it lies within the capabilities of a modest laboratory at the district level.
Resumo:
Recent studies have indicated that antiretroviral protease inhibitors may affect outcome in malarial disease. We have investigated the antimalarial activities of 6 commonly used antiretroviral agents. Our data indicate that, in addition to the previously published effects on cytoadherence and phagocytosis, the human immunodeficiency virus (HIV)-1 protease inhibitors saquinavir, ritonavir, and indinavir directly inhibit the growth of Plasmodium falciparum in vitro at clinically relevant concentrations. These findings are particularly important in light of both the high rate of malaria and HIV-1 coinfection in sub-Saharan Africa and the effort to employ highly active antiretroviral therapy in these regions.