22 resultados para Drag.
em University of Queensland eSpace - Australia
Resumo:
Cymothoid isopods Anilocra apogonae are regular ectoparasites of the cardinal fish Cheilodipterus quinquelineatus on the Great Barrier Reef. To determine whether this large isopod, attached to the head of the fish, affects the physiology and behaviour of its host, we conducted morphological measurements to obtain a condition index and several laboratory experiments on fish with and without isopods. The condition index did not vary between parasitised and non-parasitised wild fish. However, we found that parasitised fish lost more weight than unparasitised fish when fed a low food ration. Parasitised fish also had a higher rate of oxygen consumption than non-parasitised fish. When maintaining body posture in calm water, parasitised fish had an elevated pectoral fin beat frequency, probably because the isopod attaches asymmetrically, causing an asymmetrical weight balance for which the fish needs to compensate. Moreover, the sustained aerobic swimming speed as well as the swimming endurance at high water speeds were reduced in parasitised fish, possibly because of the drag from the parasite. The results suggest that parasites can have significant effects on fish even if this is not revealed by their body condition index in the wild. The metabolic effects found imply that parasitised fish may have to spend more time foraging to compensate for their higher metabolism. This could expose them to a higher risk of being eaten, a situation made worse by an impaired swimming ability that may reduce their capacity to escape a predator.
Net Drag: Network externalities affecting Narrowband Internet connections in a Broadband environment
Resumo:
For the Western-Pacific region spread-F has been found to occur with delays after geomagnetic activity (GA) ranging from 5 to 10 days as station groups are considered from low midlatitudes to equatorial regions. The statistical (superposed-epoch) analyses also indicate that at the equator the spread-F, and therefore associated medium-scale traveling ionospheric disturbances (MS-TIDs) occur with additional delays around 16, 22 and 28 days representing a 6-day modulation of the delay period. These results are compared with similar delays, including the modulation, for D-region enhanced hydroxyl emission (Shefov, 1969). It is proposed that this similarity may be explained by MS-TIDs influencing both the F and D regions as they travel. Long delays of over 20 days are also found near the equator for airglow-measured MS-TIDs (Sobral et al., 1997). These are recorded infrequently and have equatorward motions, while normally eastward motions are measured at the equator. Also in midlatitudes D-region absorption events have been shown (statistically) to have similar long delays after GA. It is suggested that atmospheric gravity waves and associated MS-TIDs may be generated by some of the precipitations responsible for the absorption. The recording of the delayed spread-F events depends on the GA being well below the average levels around sunset on the nights of recording. This implies that lower upper-atmosphere neutral particle densities are necessary.
Resumo:
A stress-wave force balance for measurement of thrust, lift, and pitching moment on a large scramjet model (40 kg in mass, 1.165 in in length) in a reflected shock tunnel has been designed, calibrated, and tested. Transient finite element analysis was used to model the performance of the balance. This modeling indicates that good decoupling of signals and low sensitivity of the balance to the distribution of. the load can be achieved with a three-bar balance. The balance was constructed and calibrated by applying a series of point loads to the model. A good comparison between finite element analysis and experimental results was obtained with finite element analysis aiding in the interpretation of some experimental results. Force measurements were made in a shock tunnel both with and without fuel injection, and measurements were compared with predictions using simple models of the scramjet and combustion. Results indicate that the balance is capable of resolving lift, thrust, and pitching moments with and without combustion. However vibrations associated with tunnel operation interfered with the signals indicating the importance of vibration isolation for accurate measurements.
Resumo:
An experimental investigation of high-enthalpy flow over a toroidal ballute (balloon/parachute) was conducted in an expansion tube facility. The ballute, proposed for use in a number of future aerocapture missions, involves the deployment of a large toroidal-shaped inflatable parachute behind a space vehicle to generate drag on passing through a planetary atmosphere, thus, placing the spacecraft in orbit. A configuration consisting of a spherical spacecraft, followed by a toroid, was tested in a superorbital facility. Measurements at moderate-enthalpy conditions (15-20 MJ/kg) in nitrogen and carbon dioxide showed peak heat transfer rates of around 20 MW/m(2) on the toroid. At higher enthalpies (>50 MJ/kg) in nitrogen, carbon dioxide, and a hydrogen-neon mixture, heat transfer rates above 100 MW/m(2) were observed. Imaging using near-resonant holographic interferometry showed that the flows were steady except when the opening of the toroid was blocked.
Resumo:
Two force balance techniques for use in hypersonic impulse facilities are compared by measuring the drag force on a 30° semi-apex-angle blunt cone model in a hypersonic shock tunnel at a free stream Mach number of 5.75. An accelerometer-based balance and a stress-wave force balance were tested simultaneously on the same model to measure the drag force. It was found that drag force measurements could be made using both techniques in a flow with a 450-μ s test period. The measured drag forces compared well with the theoretical values estimated using Newtonian theory.
Resumo:
Shvab-Zeldovich coupling of flow variables has been used to extend Van Driest's theory of turbulent boundary-layer skin friction to include injection and combustion of hydrogen in the boundary layer. The resulting theory is used to make predictions of skin friction and heat transfer that are found to be consistent with experimental and numerical results. Using the theory to extrapolate to larger downstream distances at the same experimental conditions, it is found that the reduction in skin-friction drag with hydrogen mixing and combustion is three times that with mixing alone. In application to flow on a flat plate at mainstream velocities of 2, 4, and 6 knits, and Reynolds numbers from 3 X 10(6) to 1 x 10(8), injection and combustion of hydrogen yielded values of skin-friction drag that were less than one-half of the no-injection skin-friction drag, together with a net reduction in heat transfer when the combustion heat release in air was less than the stagnation enthalpy. The mass efficiency of hydrogen injection, as measured by effective specific impulse values, was approximately 2000 s.