81 resultados para Double-fed induction machine
em University of Queensland eSpace - Australia
Resumo:
A conformationally biased decapeptide agonist of human C5a anaphylatoxin (YSPKPMPLaR) was used as a molecular adjuvant in stimulating an Ag-specific CTL response against murine P815S target cells expressing an Ld-restricted CTL epitope of the hepatitis B surface Ag (HBsAg), Groups of BALB/c mice (H-2(d)) were immunized with aqueous solutions of the HBsAg CTL epitopes (IPQSLDSWWTSL and IPQSLDSTaVTSLRR); the C5a agonist (YSFKPMPLaR); the C5a agonist and HBsAg CTL epitopes admired (IPQSLDSWWTSL and IPQSLDSWWTSLRR + YSFKPMPLaR); the C5a-active, HBsAg CTL epitope-C5a agonist constructs (IPQSLDSWWTSLYSFKPMPLaR, IPQSLDSWWTSLRRYSFKPMPLaR, and IPQSLDSWWTSLRVRRYSFPMPLaR); a C5a-inactive, reverse-moiety construct (YSFKPMPLaRRRIPQSLDSWWTSL); and a C5a-attenuated, carboxyl-terminal-blocked construct (IPQSLDSWWTSLRRYSFKPMPLaRG). Ag-specific CD8(+) CTL responses were observed after the secondary boost in the absence of any added adjuvant only in mice that were immunized with C5a-active contructs, IPQSLDSWWTSLRRYSFKPMPLaR and IPQSLDSWWTSLRVRRYSFKPMPLaR. These two C5a-active immunogens contained potential subtilisin-sensitive linker sequences between the HBsAg CTL epitope and the C5a agonist; i.e., a double-Arg (RR) and a furin protease sensitive sequence (RVRR), The introduction of these potentially cleavable sequences may be a method of increasing the likelihood of liberating the CTL epitope from the C5a agonist by intracellular proteases, thereby facilitating entry of the epitope into Ag-processing pathways via an exogenous route.
Resumo:
HLA-A*0201 transgenic, H-2D(b)/mouse beta2-microglobulin double-knockout mice were used to compare and optimize the immunogenic potential of 17HIV 1-derived, HLA-A0201-restricted epitopic peptides. A tyrosine substitution in position 1 of the epitopic peptides, which increases both their affinity for and their HLA-A0201 molecule stabilizing capacity, was introduced in a significant proportion, having verified that such modifications enhance their immunogenicity in respect of their natural antigenicity. Based on these results, a 13-polyepitope construct was inserted in the pre-S2 segment of the hepatitis B middle glycoprotein and used for DNA immunization. Long-lasting CTL responses against most of the inserted epitopes could be elicited simultaneously in a single animal with cross-recognition in several cases of their most common natural variants.
Resumo:
'Free will' and its corollary, the concept of individual responsibility are keystones of the justice system. This paper shows that if we accept a physics that disallows time reversal, the concept of 'free will' is undermined by an integrated understanding of the influence of genetics and environment on human behavioural responses. Analysis is undertaken by modelling life as a novel statistico-deterministic version of a Turing machine, i.e. as a series of transitions between states at successive instants of time. Using this model it is proven by induction that the entire course of life is independent of the action of free will. Although determined by prior state, the probability of transitions between states in response to a standard environmental stimulus is not equal to 1 and the transitions may differ quantitatively at the molecular level and qualitatively at the level of the whole organism. Transitions between states correspond to behaviours. It is shown that the behaviour of identical twins (or clones), although determined, would be incompletely predictable and non-identical, creating an illusion of the operation of 'free will'. 'Free will' is a convenient construct for current judicial systems and social control because it allows rationalization of punishment for those whose behaviour falls outside socially defined norms. Indeed, it is conceivable that maintenance of ideas of free will has co-evolved with community morality to reinforce its operation. If the concept is free will is to be maintained it would require revision of our current physical theories.
Resumo:
Watkins proposes a neo-Popperian solution to the pragmatic problem of induction. He asserts that evidence can be used non-inductively to prefer the principle that corroboration is more successful over all human history than that, say, counter-corroboration is more successful either over this same period or in the future. Watkins's argument for rejecting the first counter-corroborationist alternative is beside the point. However, as whatever is the best strategy over all human history is irrelevant to the pragmatic problem of induction since we are not required to act in the past, and his argument for rejecting the second presupposes induction.
Resumo:
Fed-batch culture can offer significant improvement in recombinant protein production compared to batch culture in the baculovirus expression vector system (BEVS), as shown by Nguyen et al. (1993) and Bedard et al. (1994) among others. However, a thorough analysis of fed-batch culture to determine its limits in improving recombinant protein production over batch culture has yet to be performed. In this work, this issue is addressed by the optimisation of single-addition fed-batch culture. This type of fed-batch culture involves the manual addition of a multi-component nutrient feed to batch culture before infection with the baculovirus. The nutrient feed consists of yeastolate ultrafiltrate, lipids, amino acids, vitamins, trace elements, and glucose, which were added to batch cultures of Spodoptera frugiperda (Sf9) cells before infection with a recombinant Autographa californica nuclear polyhedrosis virus (Ac-NPV) expressing beta-galactosidase (beta-Gal). The fed-batch production of beta-Gal was optimised using response surface methods (RSM). The optimisation was performed in two stages, starting with a screening procedure to determine the most important variables and ending with a central-composite experiment to obtain a response surface model of volumetric beta-Gal production. The predicted optimum volumetric yield of beta-Gal in fed-batch culture was 2.4-fold that of the best yields in batch culture. This result was confirmed by a statistical analysis of the best fed-batch and batch data (with average beta-Gal yields of 1.2 and 0.5 g/L, respectively) obtained from this laboratory. The response surface model generated can be used to design a more economical fed-batch operation, in which nutrient feed volumes are minimised while maintaining acceptable improvements in beta-Gal yield. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Elevated concentrations of plasma proinflammatory cytokines have been detected in patients with alcoholic hepatitis (AH) and in a model of lipopolysaccharide-induced hepatitis in ethanol-fed Wistar rats. These cytokines have been implicated in the pathogenesis of the liver damage. Considering the likely involvement of the immune system in AH, and the frequent use of Lewis rats in autoimmune disease models, Lewis rats were examined in the model to determine whether they would more closely mimic the immune status of a chronic alcoholic and be a preferable strain for use in future experiments. Lipopolysaccharide-induced hepatic tumor necrosis factor-cu, interleukin-1 alpha, interleukin-1 beta, and interleukin-6 mRNA expression was examined in both rat strains. The overall pattern of histological (panlobular piecemeal necrosis) and biochemical liver damage (plasma ALT levels), and cytokine expression was similar in both strains. Thus, it would appear that, despite the known susceptibility of Lewis rats to autoimmune phenomena, they do not respond to the experimental regime significantly better than Wistar rats. This study confirms that unknown mediators are contributing to the liver damage seen in this model and possibly in AH.
Resumo:
Neutrophil infiltration is a feature of alcoholic hepatitis (AH), and although the mechanism by which this occurs is unclear, it may involve a chemotactic gradient. We used lipopolysaccharide (LPS) to induce, in ethanol-fed rats, liver damage similar to that seen in AH. To our knowledge, this study is the first to examine the effect of ethanol on LPS-stimulated chemokine mRNA expression in this model. Hepatic cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein (MIP)-1 beta, MIP-2, and eotaxin mRNA levels were elevated 1 to 3 hr post-LPS in both groups. Maximal expression of MIP-2 and MCP-1 mRNA was higher in ethanol-fed rats 1 hr post-LPS, whereas CINC-2 mRNA expression was elevated above controls at 12 to 24 hr. Hepatic intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 mRNA levels were elevated in both groups at 1 hr, whereas L-selectin expression in ethanol-fed rats was elevated above controls at 12 to 24 hr. Hepatic neutrophil infiltration was highest during maximal hepatocyte necrosis. These data suggest that cell adhesion molecules, in conjunction with elevated cytokines and the subsequently induced chemokines, may assist in the formation of a chemotactic gradient within the liver, causing the neutrophil infiltration seen both in this model and possibly in AH.
Resumo:
Fed-batch fermentation is used to prevent or reduce substrate-associated growth inhibition by controlling nutrient supply. Here we review the advances in control of fed-batch fermentations. Simple exponential feeding and inferential methods are examined, as are newer methods based on fuzzy control and neural networks. Considerable interest has developed in these more advanced methods that hold promise for optimizing fed-batch techniques for complex fermentation systems. (C) 1999 Elsevier Science Inc. All rights reserved.
Resumo:
Recent structural studies of proteins mediating membrane fusion reveal intriguing similarities between diverse viral and mammalian systems. Particularly striking is the close similarity between the transmembrane envelope glycoproteins from the retrovirus HTLV-1 and the filovirus Ebola. These similarities suggest similar mechanisms of membrane fusion. The model that fits most currently available data suggests fusion activation in viral systems is driven by a symmetrical conformational change triggered by an activation event such as receptor binding or a pH change. The mammalian vesicle fusion mediated by the SNARE protein complex most likely occurs by a similar mechanism but without symmetry constraints.
Resumo:
Hedamycin, a member of the pluramycin class of antitumour antibiotics, consists of a planar anthrapyrantrione chromophore to which is attached two aminosugar rings at one end and a bisepoxide-containing sidechain at the other end, Binding to double-stranded DNA is known to involve both reversible and non-reversible modes of interaction. As a part of studies directed towards elucidating the structural basis for the observed 5'-pyGT-3' sequence selectivity of hedamycin, we conducted one-dimensional NMR titration experiments at low temperature using the hexadeoxyribonucleotide duplexes d(CACGTG)(2) and d(CGTACG)(2). Spectral changes which occurred during these titrations are consistent with hedamycin initially forming a reversible complex in slow exchange on the NMR timescale and binding through intercalation of the chromophore. Monitoring of this reversible complex over a period of hours revealed a second type of spectral change which corresponds with formation of a non-reversible complex. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
We use a quantum master equation to describe transport in double-dot devices. The coherent dot-to-dot coupling affects the noise spectra strongly. For phonon-assisted tunneling, the calculated current spectra are consistent with those of experiments. The model shows that quantum stochastic theory may he applied to some advantage in mesoscopic electronic systems. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Establishment of long-term potentiation (LTP) at perforant path synapses is highly correlated with increased expression of Egr and AP-1 transcription factors in rat dentate gyrus granule cells. We have investigated whether increased transcription factor levels are reflected in increased transcription factor activity by assessing Egr and AP-I DNA binding activity using gel shift assays. LTP produced an increase in binding to the Egr element, which was NMDA receptor-dependent and correlated closely with our previously reported increase in Egr-1 (zif/268) protein levels. Supershift analysis confirmed involvement of Egr-1, but not Egr-2 in the DNA binding activity. AP-1 DNA binding was also rapidly elevated in parallel with protein levels, however, the peak increase in activity was delayed until 4 h, a time point when we have previously shown that only jun-D protein was elevated. These data indicate that binding of Egr-1 and AP-1 to their response elements is increased in two phases. This may result in activation of distinct banks of target genes which contribute to the establishment of persistent LTP. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.